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Abstract

The problem is addressed of allocating one homogeneous and divisible object to 
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 people with the transfer of money possible.  An efficient and envy-free solution is proposed with each player making a bid for the object, but the highest bidder has the option of stating a spending cap.  If the proposed solution requires the highest bidder to spend more than her spending cap, an alternate piecewise linear method is proposed that preserves efficiency and envy-freeness until no longer possible, and then maintains envy-freeness until the spending cap is equal to zero.

The Problem

Problem:  We begin with 
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 people, or players, denoting a random person as 
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, and one homogeneous and divisible object, called 
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.  Each player makes a bid for the object, representing how much that object is worth in money to her, or how much she would pay for it, denoted 
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.  To avoid the complications of ties and simplify notation, we will assume the players are labeled so that 
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.  The highest bidder states a spending cap, 
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.  The problem is to allocate the divisible object and transfer money among the people in a "fair" manner.
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 (which may be negative indicating the player gives away money), called that person's portion.  All allocations will satisfy the feasibility restrictions 
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 at her bid 
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Properties of Allocations

Efficient is a property of an allocation  that means there is no other allocation that is strictly better for at least one player, and as good for all the others, that is, the allocation 
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Proposition 1:  An allocation is efficient when the highest bidder is given the entire object or when the two highest bidders share the object and the highest bidder is at her spending cap.  More formally, the feasible allocation 
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Proof:  Suppose 
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Envy-free is a property of an allocation that means each player values her portion the same or greater than she values each other player's portion, that is, the allocation 
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Proposition 2:  Suppose the spending cap is sufficiently large.  An allocation is efficient and envy-free if and only if the object is given to the highest bidder, the winner of the object pays into a "pot" an amount between the second and first highest bid for the object, and the "pot" is divided evenly among the players.  More formally, suppose 
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, and so the proposed allocation is actually feasible.  By Proposition 1 and the supposition 
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[The second statement might be proved by explicitly constructing two efficient and envy-free allocations—one of these could be from the procedure you later propose.  The third statement might be proved by carefully modifying the proof for the first statement.]
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A Proposed Procedure
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