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Abstract:

This paper offers a framework for examining coalitional formation in Oligopoly using the game
theoretic partition function form. Firms producing a homogeneous product and having known capacity
limits are examined. In determining whether two coalitions should join together in various scenarios,
the results suggest that if the initial number of coalitions producing the optimal quantity not at
capacity is less than a determinable number, then the two coalitions should join. A four player

example 1is included.
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1. Introduction and Motivation

Oligopoly models have been studied since Augustin Cournot first introduced his mathematical
model in 1838. In more recent years, oligopoly has been modeled in the game-theoretic framework.
The two approaches to modeling oligopoly in the game-theoretic framework are the noncooperative and
the cooperative. Under the noncooperative approach, the oligopolists act independently and attempt to
maximize their own profits while taking into account the actions of their fellow oligopolists. The
cooperative approach is based on the assumption that the oligopolists can make binding agreements
and collude. Thus, through cooperation, the oligopolists can determine the coordinated policy that will
yield the highest profits. The issue to be addressed by the colluding oligopolists and the goal of this
paper is the determination of the fair division of profits that should be agreed upon.

In the field of study on oligopoly, the cooperative approach is often regarded as unrealistic. The
reason being that there exist antitrust laws preventing legally binding agreements between firms.
Therefore, firms cannot enforce their agreements and it is easily shown that it is not in the best interest
of any firm in a collusion to keep its word. Thus the agreement cannot be considered believable. In
the static, or one period model, this argument is certainly valid and points to the noncooperative
Cournot equilibrium as the only realistic outcome. However, the situation changes when timesis
introduced and the dynamic, or many period, model is analyzed. As Fudenberg and Tirole [1986]
comment upon, the historical actions of the firms in the market are observed by each other over time
and realistic motivations for adhering to agreements exist. Horizontal mergers also oﬁ'er a legal single
period scenario for study. Therefore, the unrealistic single-period assumption is made and analyzed in
this paper.

The partition function form was first introduced in 1963 by Lucas and Thrall. The main
consideration of this function form is the partition, or set of coalitions, that the players of the game
form. The worth of a coalition is dependent on how the rest of the firms collude. Therefore a coalition

can have several worths, namely a worth for each permutation of the players not in the coalition. This



aspect of the partition function form seems to encompass the environment in which oligopolies operate

and is the motivation for creating a mathematical model of oligopoly in partition function form.

II. Economic and Game Theoretic Definitions

2
(1) Consumer’s Utility Function: u = agq —E,%——— pgq where u is the monetary measure of total benefit

to consumers from ¢ units of the commodity, a and b are positive constants, n is the
number of firms in the industry, and p is the price of the commodity.

(2) Demand Function: p=a —2—31 where p is price that will induce the consumers to purchase ¢
units of the commodity thus maximizing the consumer’s utility, @ and b are the same
positive constants, and n is once again the number of firms in the industry.

(3) Cost Function: C;(g;)=c;q; where c; is the cost of producing one unit by firm %, and g¢; is the
quantity produced by firm i. In the effort of simplification, the assumption of equal

average costs is made. Therefore, c; = ¢ Vi € {1,...,n} and C;(q;) = cq;- The assumption

of a linear cost function guarantees a g} such that profits for firm ¢ are maximized.

(4) Profit Function: H,-:bq,(A —%) where A=2 '; € where a,b are the constants from the demand

function, c is the cost to produce one unit, and g; is the quantity produced by firm 3.

n
(5) Capacity Restriction: K(N)= Z k; where K(N) is the capacity of the industry, and k'is the
i=1

capacity of firm i.
Without loss of generality, we can assume:

n
ky>--- 2k, and Y k<24

s=11

The quantity 324 is the quantity that will equate the market price with the cost to produce the
item, thus profits are equal to zero. The first restriction is designed to introduce some type of ordering
to the firms in the industry. The second restriction makes sense because the industry as a whole should
not spend extra money to allow for an amount of capacity that will drive the price below cost. It is
worth noting that if i k; < %, which is the optimal capacity for a monopoly, then each firm would

i=1

be producing at capacity in every possible coalition.



The following game theoretic definitions are used to model oligopoly in partition function form.

N={1,2,...,n} is the set of players in a n person game.

CL={S;|S;C N, S; # 0} is the set of coalitions of N.

PT is the set of partitions of N: {S,,...,5,} € PT if and only if S; U...US,=N, for all j such

that Sj # 0, for all k such that S, NS;=0if j #k.

(S ;3P) is the worth of coalition S j given partition P ={S,,5,,..., .S',.}.

The above definition places this oligopoly model into the framework of a cooperative game. The
worth of coalition S ¥ should be impacted greatly by the coalitions formed by the other N — S j players.
Thus the above definition states that v(S 7 P) is the joint profit of coalition S ;j in the partition game
when each coalition in P acts as a single player. In other words, the worth of coalition S ; is found by
maximizing 1r(S j;P) = Z w; given that the coalitions formed by the other N — S j Players are also
maximizing their respe::tivi -joint profits.

For a.nyvgiven partition, there are a total of r coalitions such that 1 < r < n. Because of the
ordering of capacities assumption, coalitions 1,...,/m are producing the optimal quantity not at
capacity, while coalitions m + 1,...,r are producing at capacity, such that 0 <m < r.

In order to obtain the ¢gi which will yield the I} which is v(3;Q), the maximum profit or value for
player #, partial derivatives will be taken and set equal to zero.

In the effort fo simplify the rigorous calculations involved, an additional definition will be
introduced: h; = % Thus, since A is a constant, A, is really nothing more than an adjusted capacity
of firm i. Also, let h(.S' j) =‘ ez;gjh,-, where h(S j) is the adjusted capacity of coalition S P

IOI. The n-player Game

Each firm in the industry has a capacity k;. Therefore, each coalition has the capacity
kS ) =-Z k;. The first derivative of (4) set equal to zero yields:
(6) q(éf)ijq(N> =0

where ¢(N) is the total quantity produced by the industry.



Thus the optimal quantity for coalition S; to produce is:

(M ¢ (S3P)=minft-3324(5;), K5}

Summing these coalitions yxelds.

® (5, M =124)

l=1

® 3 («5)=K5)

t=m+1

Adding these two summations together yields:

(10) ¢* (V)= 2(m"f1) = +1)( > k(s,-))

t=m+1

Substituting (10) into (6) yields:

(11) ¢*(S;P)= A(2 2(m+1) (m+1)( Z h(SJ))) where ¢*(S;; P) is the optimal quantity

for coalition §; given the partition P = {S,,S,,...,5,}.

Substituting (10) and (11) into (4) yields:

(12) =*(S;P)= m+1) 3 - Z "(5:))1’4 (S5 P)= A(z 3m +1) (m+1)( A "))‘

1—m+1

fi=1,..,m

(13) #*(S;P)= (f:ﬁ 5753\ 3 E h(SJ)), ¢(SsP)=KS;) fi=m+1,..,7;

where m is the largest integer for which ¢* (S;; P) < K(S;)for all i = 1,...,r.

The assumption of capacity restrictions plays a key role in the determination of Hwhether a group
of firms collude. Of course, the members of the coalition must have a combined capacity level that will
allow for the true optimal level of production to be reached, but the capacities of all the other firms are

of great importance.
IV. Coalitional Formation Results Using Superadditivity

When a group of firms merge or collude, they act as one entity, or player. Thus the levels of

production that are optimal for each coalition are a form of Cournot equilibrium on a reduced player



game where r is the number of players, which are coalitions, and n is the number of firms, or potential
players, in the industry. It is easily shown that when the number of coalitions in the partition is
reduced, the aggregate quantity for the industry is also reduced. Because the optimal quantity for a
coalition is dependent on the number of coalitions in the partition and not the aptua.l number of firms
in any giyen coalition, coalitions of different sizé are producing the same optimal quantity. Thus each
coalition is getting the same profit which is to be divided between the members of the coalition.
Therefore, if for example, there are two coalitions in the partition, the first with just one player, and
the other with n —1 players. Each coalition, without capacity restrictions, will have the same optimal
quantity and thus the sa.me.proﬁt. However, the one player in the one-player coalition receives all the
profit while the (n — 1)-player coalition must divide the profit between its n — 1 players. If the n—1
players are not receiving at least as much as they coﬁld get by not being a member of the coalition,
they will not join. However, because capacity restrictions are being entered into the game, when the
capacity level of the smaller coalitions is below a certain amount, it becomes profitable for coalitions to
form out of the rgma.ining players, because the smaller coalitions cannot expand their output to the
desired level. Next the issue of superadditivity will be discussed.

A game is v-superadditive if given coalitions S;,S ; and partition P:

»(S;P) + v(S;P) <v(S;U Sj;{P - {S,—,SJ-}} U{S;us,}) for all (S;; P), ($;;P)€ ECL
where ECL is the set of embedded coalitions: {(S;P)|S € P € PT}

The above definition examines the case of two coalitions joining together. This format is
applicable because when coalitions form, this formation process can be thought of as first two
individual firms joining together, then one more firm or another coalition of two firms joining them,
until the grand coalition is formed. In the case of leveraged buyouts, the buying group purchases one
firm at a time. In the case of joint ventures, granted there are times when three or more coalitions
join, but this process can also be reasonably thought of as two joining first, then a third party joining

the first coalition and so on.



Then the question to be answered is when would S; and S jJoin together. There are three cases
to be examined. The first case is when S; and S j are both presently producing the optimal quantity
not at capacity. The second case is when one of the two coalitions is producing the optimal quantity
and the other is presently producing at ca.pa.cify. The third case is when both S; and S ;j are presently

producing at capacity.

(i) Casel, S; and S; not at capacity
From (12) and (13) derived earlier, the inequality that needs to be solved is,

09 (??31—)2(%_2H+,.%E2)5((m+})—1)2 §-20+38°)
where H = Z h(St)

t=m+1 .
Note that H is a constant because H simply represents the combined quantity of all coalitions

that are producing at capacity and that will still be after S; and S jJoin together. Thus the inequality
that needs to be solved is:
) L=<l

which yields:
(16) m< ‘1-?1_—1 ~ 2.4142

Since m, the number of coalitions producing the optimal quantity not at capacity, can only be an
integer value. The above result is a sufficiency condition that can be interpreted as the following. If S i
and S j are the only coalitions producing the optimal quantity not at capacity, then by joining
together, they will be more

profitable.

(ii) Case 2, S; not at capacity, S ; at capacity:
Once again, from (12) and (13) derived earlier, the inequality that must be solved is:
2K(S )H) _
1 n_ 22 1 N J 1 (n_ =5 2 2
17 iz~ 2 +3H )+m+1(h(51) ) Sz - AE - KS;)+R(H - H(S;)) )
T
Where H = 2 h(S,) from the original partition, before S; and S ;j join.

t=m+1
The algebra yields (see appendix I.):




(18) m < n—2H

Thus, in this case, where one coalition is at capacity and the other coalition is not, if m, the
initial number of coalitions producing the optimal quantity not at capacity, is less than the number

found by entering appropriate values into the above formula, then the two coalitions should join.
(iii) Case 3,S;and S ; both currently producing at capacity:

In this case, S; and S ; are both currently producing at capacity and if they join together, will
then be able to produce the optimal quantity not at capacity. Once again, from (12) and (13) derived
earlier, the inequality that must be solved is:

(19) +1(h(5)+h(s,)X1-2-11) ((—mm(2 2(H—(h(s,-)+h(s,-)))+%(ﬂ-(h(s,-)+h(s,-)))z)

where H = E h(S t) from the original partition, before S; and S ; join.
t=m+1
When solved for m, the above equation yields a parabola.! The m’s that satisfy the profitability

constraint are found in a unique range.? The bounds are:

(B +K(5.)+(S)~ 3 +{(E = H5)+KS,)~ 57 (H+HS)+KS;)-37)

(h(S,-)+h(;'j))n—2H

The lower bound of this range is always a negative number. However, the upper bound is

positive. Thus, after the algebra (see appendix II.), the inequality to be examined is:
| (2(H +h(S;)+ h(s,.))— n)(H —n)|
2(H(S;)+ K(S;) )~ 2H)

The absolute value results from the square root of the squared quantities which must be positive.

1) m <

If n is large, this upper bound will often be positive.

It is worth noting that the case of S; and S ;j Joining together and still not being able to produce
the optimal quantity, which could occur, does not change anything. The optimal quantity for those
other coalitions that could produce it in the beginning does not change.
7r(S,-U.S'J-;P) = 1n(S,-;P)+1r(SJ-;P). Therefore, it makes no difference if S; and S ; do join in this

scenario.



With the above results, given the number of players and the capacity of each of the players, an
oligopoly can be be placed into partition function form. It should be noted at this point that if an
oligopoly is looked at from the perspective of one, or a few, of the players and not all of the capacities
are known, than cases can be found for the different capacity levels of the smaller firms where collusion

would be profitable. Next a four player game will be examined.
V. An Example of a 4-player Game

First, to construct the utility, demand, cost, and profit functions, let:
n=4, a=%$4.00, b=%0.0006, c=%$1.00, = A=$5,000.00.

The individual capacities are: k;=4,000, ,=3,000, k;=2,000, k,=1,000, = kx=10,000.
E-

Since h; =, the adjusted capacities are: h; = %, hy = -g- hy = % hy=1

5

First, without capacity restrictions, ¢¥ = 2(Tni—1_)- = 2,000.

Player 4 cannot produce this amount, so setting player 4 at capacity and recalculating yields:

94 = k4 = 1,000, ¢; = g, = g3 = 2,250.
Player 3 cannot produce this amount, so setting both players 3 & 4 at capacity yields:

94 = ky = 1,000, g3 = k3 = 2,000, ¢, = g, = 2,333, gy = 7,666.
All players can produce these amounts, so the above is the non-cooperative partition solution.
The profits for the players are:

7y = my = $1,633.33, 73 = $1,400, 7, = $700, 7, = $5,366.66.

For comparison, the monopoly solution is: ¢} = 5,000, 73 = $7,500.

At this point, coalitional formation questions can begin to be asked. First, should players 1 & 2
join, given they are both not at capacity and players 3 & 4 are separate and at capacity? Equation
(18) finds that since players 1 & 2 are indeed the only two producing the optimal quantity not at
capacity, i.e. m =2, they should join. Indeed, checking finds: ¢}, , = 3,500,

71y = 33,675 > $3,266.66 = 7, + 7, previously.



Next, the question of players 3 & 4 joining together will be addressed. First, players 1 & 2 are
considered to be sebarate. Equation (21) states that 3 & 4 should join together when m < -g—% =~ 1.619.
Thus, they should not join. Indeed, one finds: g3, 4 = ¢ = g5 = 2,500,

T3uq = 71 = 73 = $1,875 < $2,100 = x5 + 7, previously. In examining the case of players 3 & 4
joining if players 1 & 2 have already joined, one finds that ¢3 4= u2 = 3,333. Therefore, since
players 3 & 4 cannot produce this quantity, they will both remain at capacity while 4] u2 = 3,500.

Now, going back to the non-cooperative partition, should player 4 join with either player 1 or 2?
This case is where one player or coalition is at capacity and one player or coalition is not. Equation
(18) finds that player 4 should only join a coalition producing the optimal quantity not at capacity if
that coalition is the only one producing not at capacity. 'The exact result is m < % Indeed, checking
finds: g5, 4 = ¢] = 2,666, ¢3 = k3 = 2,000, 73 , , = 7] = $2,266.67 < $2,333.33 = 75 + 74 previously,
73 = $1,600. The results for player 4 joining with player 1 are similar.

The question of player 3 joining with either player 1 or 2 in the non-cooperative partition is very
similar to the abqve case of player 4 joining with either player 1 or 2. Equation (18) states that
player 3 should only join a coalition producing the optimal quantity not at capacity if that coalition is
the only one producing not at capacity, or exactly m < g Indeed checking yields: ¢3, 3 = ¢j = 3,000,
g3 = k4 = 1,000, 75, 3 = 7] = $2,733.33 < $3,033.33 = 7, + 75 previously, 7 = $900. The results for
player 3 joining with player 1 are similar.

At this point, it is worth noting that beginning with the non-cooperative partition and examining
which pairs of players could join, the possible partitions are {1,2,3,4} or {1U2,3,4} only. Next, the
partition {1U2,3,4} will be assumed to have formed, and further joining will be examined.

So assuming players 1 & 2 have joined, player 4 should join 1U2. Equation (18) suggests
player 4 should join if m < -i—i The optimal values are then: ¢35, 4 = 4,000, ¢3 = k5 = 2,000,
Tiuzue = $4,800 > 84,725 = 7 + x] , , previously, and 73 = $2,400.

Likewise, assuming players 1 & 2 have joined, player 3 should join 1U2. Equation (18) suggests

player 3 should join if m < % The optimal values are then: 41 u2u3 = 4,500, g = 1,000,



7} u2us = $6,075 > 85,775 = 73 + 7] |, o previously, and 7 = $1,350.
Now, assuming 1, 2, & 3 have joined, should player 4 join them? Equation (18) suggests player 4
should join if m < 13, which is the case. Indeed, one finds: g} 534 = 5,000,
7l u2u3ug = 37,500 > 87,425 = 7 + 7], o 3 previously.
Likewise, assuming 1, 2, & 4 have joined, should player 3 join them? Equation (18) suggests
player 3 should join if m < %, which is the case. Indeed, one finds: ¢ ;5,34 = 5,000,
71 u2u3ua = 37,500 > 87,200 = 73 + 7] o 4 Previously.
In summary, only five of the twelve possible partitions are found to have the possiblity of
forming. The five partitions that are found to be possible are: {1,2,3,4}, {1U2,3,4}, {1U2U3,4},
{1u2u4,3}, and {1U2U3U4]}.
Any value of the Shapley type works under the assumption that all coalitions, including the grand
coalition, will form. There are values defined on partition function form games by R. Myerson [1977],
E. Bolger [1987], and S. Merki [1991] which are axiomatically determined. However, in this model, as
shown above, all 'coa.litions may not form. Therefore, values that use the marginal contributions of
players to coalitions are not applicable.
The division of profits is now left to be resolved by some other means than a value. Perhaps in
d; /! WA cases such as a joint venture, division of profits could be done by a simple method. In this case, the
5‘1)\“/1‘& L’( profits could be divided by the percent invested by each member of the coalition. However, this
/u;l MU W soluftion does not reflect any other factors aside from a monetary sum, such as a brand name, brought

Y«‘:‘W JIW

’/V‘ to the coalition by each member. In a number of situations, this process would not be adequate.
y T

o VL Economic Applications
The use of partition function form has several economic applications. Two of the most apparent
are potential mergers and joint ventures. The results from this model could provide motivation for two
firms producing a homogeneous product to merge or remain apart. The feasibility of the merger taking

place can be examined first.

10



The area of joint ventures also provides a setting of applicability. Depending upon how the other
members of the particular industry are colluding, analysis using this model will determine if a potential
joint venture would be profitable.

The decision to enter into an industry is another application. The current environment can be
examined. Then the decision to enter or stay out can be made. Further, the necessary production
capacity can be determined, costs for this capacity can be estimated to provide for a good decision
making tool.

John McDonald [1975], in his book The Game of Business, describes a business game comprised of

American corporations deciding who would put up domestic communication satellites. Between 1960
and the mid 1970’s, the idea of using satellites for domestic communication was developed to a point of
being economically feasible. There were ten corporate groups involved. Some had the necessary
technology to build the satellites, while others had the necessary ”traffic”, therefore there were

potential gains from cooperation, even between firms that normally competed. Depending upon which
corporations and the capacity sizes of the satellites to be placed in orbit, the coalitions have different
worths. McDonald outlines the different worths for the various partitions that could form in his book.
While in 1963, Lucas and Thrall were the first to develop the theory of partition function form games,
McDonald’s examination of the satellite game was the first application. Decisions for placing satellites

in orbit with several players could be analyzed in the framework developed in this model.

VIL Summary and Conclusions
An oligopoly model has been created using the game-theoretic partition function form. Capacity
restraints are placed upon the players with the assumption that all capacities a.ré known. Based upon
the idea of coalitions forming out of two smaller coalitions, using the axiom of superadditivity,
sufficient conditions are derived for two coalitions joining together in each of the three possible

scenarios: both not at capacity, one at capacity and one not at capacity, and both at capacity.

11



Footnotes

*The author would like to thank David Housman, Edward M. Bolger, David W. Haley, and the
National Science Foundation for its Research Experience for Undergraduates grant.

1When n > 2H the parabola is concave up, which is often the case. However, when n < 2H the
parabola is concave down.

2When n < 2H, then the m’s that sa.t!isfy the profitability constraint are found in a strictly
negative range. Thus, in other words, if n < 2H, then S; and S ;j should never join if they are both
currently producing at capacity. Therefore, only the case of n > 2H will be considered.

3The following assigned values are used by Martin Shubik in an example on page 127 in chapter
five of his book A Game-Theoretic Approach to Political Economy, except in order to be consistent

with the theory presented in this paper, the players have been reordered from smallest to largest

capacity.



Appendix L

The inequality that needs to be solved is:

g 3 s ) -G ) s (s - s )+ K-

-
Where H = Z h(S,) from the original partition, before S; and S join.
t=m+1 ;

> (3-28+%8%)+ (m+1)(h(s,-)—2h(i")g)s(g—z(H—h(sj))Jr%(H—h(sj))z)

(32— WS:)+HE - KS;)f )~ (528 + 8°)

( K sj)—zh(i")ﬂ)

-1

2n—4H+h(SJ-)—-n+2H

= mE -y 1

ki ooy



Appendix II.

The equation that needs to be solved is when m < :

H+(S)+K(S,)~ 3 +{E-HS)+KS;) 37 (B +KS)+K5;)-37)

(
(h(s,.)+h(;j))<n—2m\(
o wmol NI i

“\ (#(5:)+K(S;) n —2m)

| H +K(S;)+H5;)-3|

bR S((h(S;)+h(Sj))n—2H)> it

(12(B+H(S;)+1(S;))=n] X1 H=n])
2(W(S;)+H(S;)Yn—20)

)|H+h(5,-)+h(5j)-%| + IH~h(S;-)+”(5j)—%')

=> m<
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