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A cooperalive game is a pair (N,w) where N is a set of players {1, 2,..., n}, and wis a real-valued
function on the subsets of N, where w(@)) = 0. The subsets of N, denoted by S, are called coalitions.
The number w(S) represents the value the individual players in S can obtain by cooperating as a group.
A cooperative game is superadditive if w(SUT) > w(S) + w(T) for all coalitions S and T satisfying
SNT=4.

A graph is an ordered pair G=(V,E), where V is a nonempty finite set of vertices, and E is a set
of pairs of elements of V called cdges; we sometimes denote V and E as V(G) and E(G), respectively
[1]. A subgraph of G is any graph H for which V(H) C V(G), and E(H) C E(G) [1]. The subyraph of G
on SCV(G) is (S,E') where E'={ {a,b} € E(G): a,b € S}. A graph Gis connected if for every pair of
vertices there is a path between the two vertices; in other words, there exists a way to get from one
vertex to the other without crossing any vertex more than once; a graph is disconnected otherwise [1].
A component of a graph is a subgraph which is itself connected [1]. The connectivity of G corresponds
to the minimum number of vertices which, when removed, disconnects G [1].

A cycle is a closed path, and a tree is a connected graph which has no cycles [1]. For a connected
graph G, a spanning tree, T, is a trec subgraph of G where V(G) = V(T) [1]. A forest is a graph
which has no cycles; hence, if G is disconnected, then a forest consists of the spanning trees of each of
the graph’s components [1]. We define a spanning forest, F, of G to be a forest subgraph of G where
V(G) = V(F) and no additional edge can be added without creating a cycle.

A graph game is a game defined on a graph. We deﬁné one such game, a spanning forest game,
to be an ordered pair (G,w) where G = (V,E) is a graph, and w is a real-valued function on the subsets i
of V defined as follows: w(S) is the number of edges in a spanning forest of the subgraph on S. In
other words, w(S) = | S| — ¢, where c is the number of components of S.

Example of Spanning Forest Game:

e

Notation: w({A,B,C}) = w(ABC) .
w(A) = w(B) = w(C) = w(D) = w(E) = 0, !
w(AB) = 0, w(AC) = I, w(AD) = 1, w(AE) = 1, w(BC) = 1,
w(BD) = 0, w(BE) = 0, w(CD) = 0, w(CE) = 0, w(DE) = 1, -
w(ABC) = 2, w(ABD) = 1, w(ABE) = I, w(ACD) = 2, w(ACE) = 2,
w(ADE) = 2, w(BCD) = 1, w(BCE) = 1, w{BDE) = I, w(CDE) = 1,
;\'(f\BCD) =3, w(ABCE) = 3, w(ABDE) = 2, w(ACDE) = 3, w(BCDE) = 2,
Ww(ABCDE) = 4 :



An allocation for a cooperative game is a vector = = (2, :tz,‘..,xn) where z; is the payoff to the
player i. An allocation method is a function which assigns an allocation to each cooperative game. An

n

allocation method a is efficient if _Zlai(N,w) = w(N); the allocation method a is additive if o N,wtu)
= a(N,w) + a(N,u) for all games (N,w) and (N,u); the allocation method a satisfies the property of
equal treaiment if a;(N,w) = aj(N,w) for all games (N,w), where players 1,j € N satisfy w(SU{1}) =
w(SU {5}) for all SC N—{ij}; the allocation method o satisfies the property of no free lunch if
(N, w)=0 for all players 1€ N satisfying w(SU{i}) = w(S) for all SCN. The Shapley value is the

unique allocation method @(N,w) satisfying the properties of efficiency, additivity, equal treatment,

and no free lunch. The Shapley value can be found with the following bformula,:

¢;(N,w) = z (s=1)!(n —s)! [w(S) — w(S— {i})], where s=| S| and n=|N|.[2)
SCN n!

One of our goals is to find a method for determining the Shapley value of a player using only the
information found in the graph, rather than using the formula mentioned above. We can do this for

some spanning forest games using the following theorems.
Theorem 1: In a cycle with n vertices, the Shapley value for any vertex is 1 — % :

Proof: The proof follows directly from equal treatment and efficiency.

Example Using Theorem 1:

.
i

¢A:¢B:¢C:d’l):¢b}':

Theorem 2: If the graph G = (N,E) associated with a spanning forest game (Gar) is a treey then for
§

leg(d
each : € N, d’i(Ns"”):( (9;(‘)

Proof: Let G=(N,E) be a tree. Define w®(S) on € € E and S C N as follows:
A

wt(S)= { 1 if both vertices incident to e are in S ) /
0 otherwise 4
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Y. w®(S) is equal to the number of edges in G for which both incident vertices are in S; since G is a
eEE

tree, 3 w®(S) is equal to the number of edges in a spanning forest on S. Thus, . w®S) = w(S),
c€E ¢e€E

by the definition of a spanning forest game. Thus, ¢(w) = ¢(). w®). Furthermore, by additivity,
eckE
$(> v =Y (), s0 ¢(w) = 3 ¢(w). It follows that for each i € N, p;(w) = 3 @;(w°).
ecE eE€EE eckE ecE
We consider a player : € N. For an edge e incident to i, qSi(we) = % by efficiency, equal
deg(1)

treatment, and no free lunch. Thus, ¢,(w) = 3 ¢i(we) = (number of edges incident, to i)*% = —5—
eEl

Example Using Theorem 2:

B
¢,4 =

|

L
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Theorem 3: Suppose G = (V,E) is a graph and {E|,E,,....E,} is a partition of E which partitions
cycles (if Cis a cycle in G, then C C E]- for some j = 1,2,....,k). Let GJ» = (V,E'j) for j = 1,2,....k.

k
Then ¢ (Wg)= > ¢ (We)-

Proof:

-

Let F; be a spanning forest for (?}-.
Then by the definition of forest size games, l/VG:(S) = F -
Let F = F U..UF,

So F is a subset of E.

.
n
o

. o oo -~ ~ i et Chems vl
Suppose I has a cycle. Then the cycle would be'in some F . because {I7,,....E .} partitions cycles.

D 5

But this coutradicts the fact that F;is a forest. So, F has no cycles.
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Suppose F' does not span G. Then there exists an edge e which can be added to F without

creating a cycle. But this edge would have to be added to some F ;j Without creating a cycle in G 5
which contradicts the fact that F v is a spanning forest. Therefore, F spans G.

Hence, F is a spanning forest for G.

k k
SoWg(S)= |Fl= Y IF;l = ) W (S):

k
Thus ¢(Ws) = ¢ ( > we ) :
=1 7

k
And by additivity, ¢(W ) = d(Wg ).
=1 4

Example Using Theorem 3:
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ba=6c= 5. 6p=1,0p=dp=bp=

oI

Theorem 4: Suppose G=(V,E) is a graph in which all cycles arc edge disjoint.
deg (i i
Then ¢, (W) = eg)(,(l) — Z l—él , where C(G,i) = {C C FE(G) : C is a cycle containing #}.
7 @=Ee

Proof:
Let E = EqUE U...UE,; , where E,,....E, are cycles in G and E, = F — (E,U...UE,) is the

remaining forest. Note that {E, I/, ...., E.} is a partition of E since cyeles are edge disjoint.
n
/

Let G, = (4 E ).

By Theorem 1, for j = .l,...,l\',



1 if i is adjacent to E(G )

1
~IE@G))
¢, Wg )= {

J
0 otherwise
deng(i) ;
— = if 7 is adjacent to E(G .
2 [E(G)) ] psept a0 byl
In other words, ¢, (W, ) =
J deg. (1)
egG .
TJ otherwise
And, by Theorem 2, for j = 0,
degGO (2)
{Ey,E,,-..,EL} partitions cycles, so by Theorem 3,
$i(Wg)= D¢ (WGJ.)
d deg, (2
2 2.3 - TEG)T
g=1 3j Al
deg (2 :
= ng,(?) 8 | é' because {EO,..., Ek} is a partition of FE.
c e €(G,i)

* where i is adjacent to E(Gj)

Example Using Theorem 4:

i
I}
¢

Theorern 5: Suppose G=(V,FE) is a graph and EI‘E‘Z 'g I for which E\VE,=FE E\NE,= {e} for



¢ € E, and any cycle C C E for which e € C must satisfy C C E; or CC Ey. Let G; = (V, E,) for
i=1,2. If £ €V is not incident to e, then qSi(G,w) = ¢i(G1,w) + ¢i(G2,w). If 1 € V is incident to e,
then ¢,(G,w) = $,(G.w) + ¢;(Gow) — %

For a proof of Theorem 5, see Darren Lim’s paper.

Example Using Theorem 5:
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Another allocation method to consider is the Taw Value[3], which represents a compromise
between the maximum and minimum amounts to which each player may relistically be entitled. For a
player i € N, the maximum and minimum entitlements, respectively. are given by:

M= w(N) — w(N - {i}), and

m; = max{w(S) — >  M.:i€e SCN}

1 } ) =
J€S—{1}
The Tau Value is the efficient compromise between the maximum and minimum entitlements and can

be found with the following formula:

T(Na) = /\m.i+(l —A\M;

Y M, - w(N)

here A = —ELY :
where W e
ieN €N

i
In a graph G, we say that a vertex v is a cul verler il its removal disconnects a confponent of ¢/

» )

[1). Using the cut vertices of a graph, we can determine the Tau value for cach player in the
4
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A

corresponding spanning forest game using the following three theorems:

Theorem 6: If a vertex vy is an isolated vertex in the graph G=(N,E) associated with a spanning

forest game (G,w), then TUS‘(N,w) =0.

Proof: For an isolated vertex vy, M"S = w(N)—w(N ~ {v,}) = 0.

By the definition of a spanning forest game, w(S)< | S| —1. For any i € N, there exists a
subset § C N for which w(S) = |S| —1, this being S = {i}, which maximizes w(S). Also, since
M, >1 for all i€ N, > M]- Z|S5|—1. Thus, for any i € N therc exists an S C N for which

jes—{i}
M. = |S| —1, this being S = {i}, which minimizes }_ M i It follows that for any i € N,

e M . .
JiE S i 3€5 - {i}

max{w(S)-j X . Mj :i€ESCN}=|S|—-t—-(|S]|—-1)=0. Thus, for any i € N, m; = 0.
JjesS—{i
Since M"s: 0 and my = 0, Ty = A(0) + (1 =X)0 = 0‘.

Because of the results of Theorem 6, we need no longer consider isolated vertices when calculating
the Tau value. Hence, in the following two theorems, we assume that the graph G contains no isolated

vertices, ie. that all isolated players have been removed from the game.

Theorem 7: If the graph (=(N,E) associated with a spanning forest game ((7,w) contains no cut

. w( N ; :
vertices, then T]-(!V,w) = —& ) for all 1 € N, where n=|N]|.
Proolf: Let 7 be any vertex in N.  Since 7 -is not a cut vertex, N — {i} is connccted, so

M ;=w(N) - u(N - {i})=1.
1
For any SCN, ¥ Mi = |S| = I. Furthermore, for any i € N there exists a subset § C N
WE Sl

which is connected, this being S={players in the component containing i}. Thus, an S exists for which

w(S)={S|— 1. In this case, w(S)— 3 M‘i = |S]=1-(|S]=1) = 0; this is the maximal case
JjeS-1{i} B
because if S C N is disconnected, then w(S) <|[S|—1, so w(S)- Y M = W {Thus, m,=
SR A B :
max{w(S) - Y M;:1€e5C N} =0.
jes—-{i} - ;



Since M .=1 and m;=0 for every 7€ N, /\:n——;}(—N)~ Thus, Ti(va) = ll'_‘:ﬂ m
(1 _";:;’(_N))Mi =0 f n—(n—nw( m) = w(év) for all z € V.

HEE

Example using Theorem 7:

© ©)
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T.4:TB:TC:TD:TE:

Theorem 8: If v, is a cut vertex on the graph G=(N,E) associated with a spanning forest game (G,w),

and its removal scparates the component containing it into k& components, then 7, =k * where
¢

Ty
v,, is a vertex in G' which is not a cut vertex.
Proof: G contains a non-cut vertex v,, by a theorem given by Behzhad and Chartrand[4] which states

that any graph for which | V| > 2 must contain at least two non-cut vertices.

IS a cut vertex

Since v, is not a cut vertex, M'”n = w(N)—w(N - {v,}) = 1. Also, since v,

whose removal divides the component containing it into k components, MUC = w(N)- w(.N —{v.}) =
w(N) = [w(N)—k] = k.

By the definition of a spanning forest game, w(S) < | S| —1. For any + € N, there exists a
subset S C N for which w(S) = | S| —1, this being § = {i}. \\:‘hi('ll maximizes w(S). Also, since

M.2>1 for alt i€ N, 7 :\"j < |S| -1. ‘Thus, for any i € N there exists an S C N for which

jeS- i)
b Mj = | S| — 1. this being S = {7}, which minimizes > Mj' It. follows that for any 71 € N.
i€ s —{i} j€S—{i}
m;,\x{u,:(S'.) -3 ) ‘”_j e SC N =|Sl=1 =0l :S'l = 1) =0. Thus forany ie N.m; = 0.
JES—{i} .
For the non-cut vertex v, 7, (¥Nae) = X0) + (1 = A)1 = I = A Furthermore, for the cut vertex

Un

Ve r”(.( Ny = MO) + (1 — Ak = k(1 = A). Clearly, Ty, 7 B

C



Example Using Theorem 8:

Let z = T for every cut vertex i:

TA:I,TB:2I,TC:I,TD:3:L',TE::(:,TF:;(:_

w( \) =

(]

S|

By efficiency, x + 2z + 2+ 32 + 2 + z = w(N), s0 9z = 5, and z =

Thus, HCwl =G 10318 5 5
Thus, 7(G,w) = (9, 9°9'9°9° )"
It is important to note that the definition for the Tau value given above only applies to games
which are quasi-balanced; these are games for which m, <M, for all i€N, and

> m; < w(N) < 3 M. However, the two proofs given above show that for any spanning forest
ieN i€EN -

game, m; = 0 and M, <1 for all i€ N, so m; <M, for all i€ N. Furthermore, 3 m; = 0 and
‘ 1EN
2. M;<|N|. Since 0 <w(N)< |N|—1, it follows that 3° m; <w(N)< Y M;. Thus, any
iep i€EN i EN

spanning forest game is quasi-balanced.

Our future work may include considering other allocations with respect to spanning forest games.
We may also determine special allocations for graph games in general, or attempt to characterize

N

games which may be represented by graphs.
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