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Introduction

An n-person cooperative game is a pair (N, v) where N={1, 2, ..., n} is
a setof n players 1, 2, ..., n and where v is a real-valued characteristic
function on 2N, the set of all subsets of N. Let S, a subset of N, be a
coalition of players, and let v(S) assign a value to the coalition S when the
members of S work together. Define v(g) = 0. The game (N, v) is called a
value game. A cost game is defined as ¢(S) = - v(S).

A game is superadditive if for all coalitions S and T where ST = J,
v(SU T) 2Vv(S) + v(T).

A game (N, v) is additive if it can be decomposed into two games (N4,
v4) and (N, v,) such that, for all coalitions S; < Ny and S, < N,
V(S1 U Sy) = v4(Sq) + vo(So).

A game is said to be monotonic if v(S) = v(T) whenever T is
contained in S.

A vector X = (Xq, Xo, ..., X,;) With real components is an imputation for

the game if x; 2 v(i) for all i contained in N (individual rationality), and
n
Z x;=v(N) (efficiency).
i=1
(See figure 1.)

An imputation x is coalitionally rational if, for all S c N,

Y xiz2v(S).

ie§

The core of a game is defined as the set of all imputations x such



Figure 1: The Imputation Space

(0,0,x3)

x2 + x3 = v(23) core x1 + x3 = v(13)

x1 + x2 = v(12)

(x1,0,0) (0,x2,0)

nucleolus

that » x;2v(S)for all SN, and Y xi. (Seefigurel.)
te s ie N
An allocation method is any procedure which, given a game, assigns
or allocates the amount x; to player i for all players. The allocation is the
vector X = (Xq, Xp, ..., Xp)
There are several fair allocation methods which we considered in
our research. They are as follows:

(1) Shapley value: The Shapley value measures each player's marginal



contribution to the grand coalition, and averages these values over all
possible permutations of the players. Formally, the Shapley value for
player i is defined as

6 ;- 3, CEE () v s - {i).

-8y
(2) Nucleolus: We first define the excess as

e(x,S) = v(S) - Z X

ie§

This value represents the "size of the complaint" the coalition S would
have against the allocation x. Define the excess vector as

e(x) = [e(x,51), &(x,S,), ..., e(x,Sp(n.1))] , where e(x,S)) > e(x,S;, 4).

To define a lexicographic ordering on x and y, we say x <y if there exists
anisuchthatforj=1,..,1, % =y; and x4 <Y;,4. The nucleolus is the
value which minimizes e(x) lexicographically. It is in one sense the

"middle" of the core of a game, if the core is nonempty. (See figure 1.) The

nucleolus can be found with a series of linear programs.

(3) The Tau value: To find the T-value we first find the marginal vector
Mi(v) = v(N) - v(N\{i}), which is the amount player i will contribute by
joining to form the grand coalition. This is considered as the most that
player i can hope to receive if working cooperatively with the other

players. The remainder for player i is calculated:



RS, )=v(S) - ¥ M)
je 54

From this a lower bound for an allocated amount for player i is found. The
minimal right for player i is m;(v) = min R(S, i). The 1-value for player i
is the unique efficient vector lying on the line determined by m(v) and

M(v).

Kohlberg's Theorem
In order to state Kohlberg's theorem, we will need a few definitions.

Balanced collections: Letf ={S;, Sy, ..., S;,) be a collection of subsets of

N={1,..n}. B isN-balanced if we can find a balancing vector

Y = (Y1, ---» Ymy) SUch that, for every player i,

Z yi=1,

kies$;
and all y;> 0.
Given an imputation x, let By be the set of all coalitions with kth maximal
excess, such that the excess of {3, is greater than the excess of 3, ;.

Define the array determined by x,

X
Ce=U B:.

i=1

Theorem: The imputation x is the nucleolus of a game (N, v) if and only if

the array Cq, ..., Cq determined by x consists of only balanced collections.

-\E"l,-

<
Q

TorP



Part |

('\?‘ ﬂ"s
“TPN |

PN



Strengthening of Kohlberg's Theorem

Suppose (N,v) is a superadditive game. For a given imputation x, we
define a sequence of collections By B, such that By is the collection of

coalitions with kth maximal excess. Let

By the definition of B;, we know that for a given i = 1...q, e(x,S) = e(x,T) for

all coalitions S and T in B;. From this we can derive no more than |pJ-1

independent equations in x. Note that these equations need not all be

independent. Let d; be the number of independent equations determined by

C; , along with the efficiency equation

ixi=V(N),
iwl

We define k* as the minimal integer such that d,» = n. We have n

independent equations and n unknowns, and we can uniquely determine x.

Theorem: The imputation x is the nucleolus if and only if the collections

C, ... Ck- of coalitions determined by x are balanced and the excess

equalities determined by C,~ and efficiency are solved uniquely by x.

Definition: To prepare for the proof, we define the characteristic vector

~ B~



on S by representing S c N as a vector 1= (sy,...s,) where

s;=1ifie S,ands;=01ifie S.

Proof: (Modification of Kohlberg, 1971) Suppose C; ...Lq are the collections

of coalitions determined by x, and suppose C,...Cy~ are balanced. By
Kohlberg's theorem, we can show that x is the nucleolus by showing that

Ck*+1,---Lq are balanced. We will show this by showing that any collection C
D Cy- is balanced. This will be true if Cy» u {T} is bélanced forall T ¢Cy»
(because the union of balanced collections is balanced). Since C« is
balanced, there exists yg > 0 for each S € Cy« such that

2 ysls=1n

SeCk.

Since cK” and efficiency uniquely determine x, there exists

S1---Sp € Cy» U {@,N} such that {14, -14o,..., 150n.1, ~152,} are linearly

independent and span R,. Then there exists z¢ for each s € Cy~ such that

lp= Y z5lg

se Cpx

Adding these two equations and multiplying the second by ¢ gives us
Y (rs-ezg) Ig+ elp=1y.

SEth

Since yg > 0 for all S e Cy., we can choose >0 small enough so that y - ez
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> 0 for all Se Cy+. Hence, Cy» L {T} is balanced.
Figure 2: Graphic View of Proof of Theorem 1

z 4 %
| ® Case 1
maximal excess
" bix > bly
®  bix-bily
& ® Case?
bix < bly
o ®  box=b2y
o ®  b3x = b3y
minimal excess ® L | bgx = bqy

Conversely, suppose x is the nucleolus. By Kohlberg's theorem, C;...Cy

are balanced. So, the conclusion of the present theorem would be false
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only if there exists an allocation y # x with vector C. Let

bix = e(x,S), for all coalitions S in B;, and
biy = e(y,S), for all coalitions S in ;.
Consider by, and by,. We have two cases: (Refer to Figure 2)
Case 1: by, < b1y. Then e(x,S) < e(y,S). Letz =Ly + (1-A) x where A < 0.
Then for S e By,
e(z,S) = re(y,S) + (1-1)e(x,S)
=Abyy + (1-A)by,
=Abqy, -Abqy + by, < 0+ by, = €(x,S).
So, e(z,S) < e(x,S) for all S € B4. Now since e(x,R) < b forallR e By, we
can choose A close enough to 0 so that e(z,R) < e(z,S) forall R ¢ By and
S e By. This .implies that e(z) < e(x), which contradicts our assumption

that x is the nucleolus.

Case 2: by, >by,. Then e(y) < e(x), which contradicts our assumption that
X is the nucleolus.

Then by, = by,

Consider by, and b,,. We have 2 cases:

Case 1: by, < b, . The same argument holds as for case 1 above.

Case 2: by, > b, . Then, since by, = b,,, and by, > by, e(x) > e(y). This

1y’
contradicts our assumption that x is the nucleolus.

Then by, = by,

~ T



The same argument holds, by induction, for all by,, by, in By...34. (Refer to

Figure 2.) We then have e(x) = e(y), and leads to a contradiction because of
the uniqueness of the nucleolus. Then y is the nucleolus, and the array

corresponding to x uniquely determines x.
Conjectures on Bounds for K*

It was hoped that a reasonable bound for k* could be established so
as to further strengthen the theorem. Two approaches were tried, and
counterexamples proved them incorrect. It was decided that further
research into a bound for k* would not be useful, so the theorem stands as

stated above. The two approaches and their counterexamples follow.
One idea was that each successive B; adds only independent

equations in x to the system. This seemed to hold true for the examples

we had tried to this point. If this were true, then the following bound for

k* follows:
N<T+(IBg]-1)+ (1Bl - 1) + oo + (Bl - 1)
<1+ [Cps| -K*

The counterexample is as follows:
Define a 3-person game:

vy(i) =0

vi(12) =7

v4(ij) = 0 otherwise, and v{(N) = 9.

nucleolus = (4,4,1).

~ Bl



Define the same game, call it v,, on players 4, 5, and 6, then define a

6-person game by adding the two:

V(S1 U 82) =¥y (81) + V2(82).

By additivity, the nucleolus of the new game = (4,4,1,4,4,1). Now,
By = {123,456}
By = {12,12456,3,3456,45,12345,6,1236}

If the conjecture holds, then k* = 2:

nS1+Ith|-k*
6<1+10-2
6<9

These collections determine only 3 independent equations, and therefore do

not uniquely determine x.

An unproven but intuitive idea was that for all §; contained in C,,

IB;| = 2. This would imply that each successive B; would yield at least 1
more equation in x. This is the "worst case" approach. It was conjectured
that , because of the balancing restriction, each successive B; must yield

at least one additional equality, so k* < n-1 must hold. The
counterexample is as follows:

Define a 4-person game:

v(i)=0

v(12) =1.4

v(13) =v(14) =v(28) =v(24) = 1.2
v(34) =2

10
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v(123) = v(124) =
v(134) = v(234) = 3.1
V(N) =5.4

The nucleolus of this game is (1.2, 1.2, 1.5, 1.5). Note that the game is
superadditive with no other special properties. If the conjecture is true,
then k* = 3:

By ={12,34}
B, = {134,234}
B3 ={1,2}

These collections yield 2 independent equations in x, for a total of 3

equations and 4 unknowns, so x is not uniquely determined.

Iterative Scheme For Calculating the Nucleolus

In 1967, R.E. Stearns produced a convergent transfer scheme for
calculating the nucleolus of an arbitrary n-person game. We proposed a
similar scheme based on the properties of consistency and covariance.
Recall that Sobolev proved that if a method satisfies both consistency and
covariance, then the method must be the nucleolus.

Define the quantity S;(x) = max e(S,x) for all S containing i but not
j. In other words, Sij(x) is the best that player i could do without the
cooperation of player j. Call this quantity the surplus of i against .
Suppose that Sij(x) -3 Sji(x). Then player i can make a demand on player j

that player j cannot contest. This leads to a degree of instability in the

11
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allocation x. The iterative scheme for calculating the nucleolus considers
this excess demand, S;i(x) - Sji(x), and continues until S;j(x) - Sji(x) = 0.
We then tested the algorithm to determine if it did, in fact, converge to
the nucleolus, and if so, with what order of efficiency. Unfortunately, the
algorithm converges to the nucleolus ohly in special cases, and may
converge to other points depending upon the point at which the iterations
begin.

The kernel of a game is defined as the set of all payoff vectors such
that no player i can make an uncontestabl.e demand on any playerj. This
can occur in one of three ways:

1. §j(x) = S;(x),

2. Sﬁ(x) > Sji(x), but Xj = v(j),

3. Sji(x) > Sij(x), but x; = v(i).

Notice that the termination of the proposed algorithm will occur at any

point in the kernel for which condition 1 is satisfied, and this is where
problems arose. For all 3-person games, and for all 4-person constant sum
games, the algorithm always converges to the nucleolus, because the
kernel of these games consists of that single point. The algorithm may
converge to different points in the kernel for games in which the kernel is
not a single point. Further attempts to revise the iterative method would
have been unproductive, as they most likely would have led to Stearns'

algorithm of 1967.

12
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Linear Programming Algorithm for Calculating the Nucleolus

~ Turning away from the iterative approach, and due to the need for a
quick way to determine the nucleolus, we turned to the linear programming
technique for calculating the nucleolus of a game. The model is based on

Owen's article of 1982 in his book, Game Theory. The method used to solve

the model is the revised simplex method presented by Chvatal, 1980, with
a slight modification to allow for free variables.

Suppose (N,v) is a game and w is a vector with n-1 positive
components. We first define the w-nucleolus, a generalization of the
nucleolus, as the value which lexicographically minimizes the maximal
weighted excesses on the set of imputations:

v(S)- X x;
ieS

en (x,5) =
N W]

The nucleolus as defined earlier is simply the weighted nucleolus when all

Wig| = 1. The sequence of linear program is as follows:

N={S N:S=g}
By =Co = {N}
By=Co=0

R
I

(0]

0
o(S) =v(S) forallScN

<

13



Fork =0,1,... until a unique x has been determined/ C, 4 = N.
ak+1 = min o

subject to
w!S|a+ Z x;2 vk(S), SeN\Cy
ie §
2 _ .k
X; =V (S), SGCk
ie S

Xi 2 V(i), i € N\Ck
Xp=V(i), iecCy

Bri1=1{Se M\C; Iws o+ z Xp= (S}
ieS§

for all optimal solutions x for LP,
Cke1 = Ck U Br+1
Bis1 ={ie N\Cy : x; = v(j) for all optimal solutions x of LP, }
Cis1 = Ck U By,
vk 1(S) = vK(S) - wIS|oy 1 IS e By,

= vK(S) otherwise.

Note that B and B need not consist of all possible coalitions that satisfy

the definition. All this means is that the procedure may take more than

one LP to find all the members of B and B as defined above. This does not

affect the final outcome, but may be of importance when further research

is done on the efficiency of the algorithrﬁ.

In order to minimize the runtime needed to solve the LP, we instead

consider the dual of the LP given above. It is defined as follows:

14
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k .
max z v (Sys+ z v(i)z;
SeN ieN

subject to

S wisly®) =1
S GN\Ck

Z ys+1z;=0, ie N
S:ieS

Ys 20, Se N\g,
2,20, ie N\Cy.

B'k+1={Se N\Ck:ys*>0}c Bk+1’
B’k+1={iE N\Bkzl*>0} CBk+1'

Using the strengthening of Kohlberg's theorem, it makes sense to
terminate the procedure as soon as the nucleolus is uniquely determined,
rather than continuing through all linear programs. Termination occurs
after the k! LP if the following system of linear equations possesses a

unique solution:

> xi=v"US), S e Cpppyand x;=v0), i€ Cpyy

ied
Each time a linear program is solved, the constraints corresponding to the
coalitions whose excesses must be maximal for all optimal solutions of
the LP are changed to equalities in the next LP. These equalities are added,
one at a time, to a matrix, as they are determined. The matrix is then

reduced in order to determine if the new equation is independent of those

15



already in the matrix. If it is not, it is not added to the matrix. Thus the
matrix consists only of independent equations in x. When the matrix is of
rank equal to the number of players, we are able to uniquely determine x.
By the strengthening of Kohlberg's theorem, x must be the nucleolus, and
the program terminates.

It must be noted that the method used to solve the linear programs
is not the most efficient one, since many pivots are required to find the
optimal basic feasible solution. The method will be revised as the

efficiency of the program is improved.

16
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Two-additive Games

Two-additive games are a class of games in which the value of all
coalitions with more than two players depends on the values of the
two-player coalitions. Given a set of players N = {1, 2, ..., n}, define the

characteristic function as

0 i IS|<2

v©S) = )% L fISI=2
D, xg 5 ifIS]>2
RcS

A way to visualize this is to draw a graph G = (N, E), where each player is
represented by an element of the vertex set N, and the value of the
coalition (ij) is represented by the weighted edge of E with endpoints i and
j- On a coalition S < N define
(1) an interior edge of S as an edge in E with both vertices in S;
(2) an exterior edge of S as an edge with no vertices in S; and
(8) a boundary edge of S as an edge with one vertex in S.
The value of a coalition S is defined as the sum of the weights of the

interior edges of S.

Theorem: On two-additive games, the nucleolus, the Shapley value and the

tau value achieve the same value: v;=T; = ¢; = 1/2 * (the sum of the

weights of the edges adjacent to i).
Proof for nucleolus: Given a game as described above, with player set

17
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N ={1, 2, ..., n}, we will use Kohlberg's theorem to prove that the nucleolus
for player iis 1/2* (the sum of the weights of the edges adjacent to i).

Let x be defined by x; = 1/2* (the sum of the weights of the edges

adjacent to i). Now we find the excess e(x, S) for each S — N.

e(x,S) =v(S) - Z X;

ieS§

= (the sum of the weights of the interior edges of S) - 1/2 *

(. the sum of the weights of the edges adjacent to i)

ieS
= (the sum of the weights of the interior edges of S) -
1/2* (2 * the sum of the weights of the interior edges of
S + the sum of the weights of the boundary edges of S)
=-1/2* (the sum of the weights of the boundary edges of S).
Since SCis also a set in N, e(x, S = -1/2 * (the sum of the boundary edges

of 8. Hence, for every S N, e(x, S) = e(x, S°) so for every S B, S¢c B
Since each player is in the same number of coalitions in each B, each B; is

balanced so x is the nucleolus. (Onep Edel Asi&on)

Proof for Shapley value: Given a graph G = (N, E), N vertices, E edges.
Consider an edge e with vertices i and j. When calculating the Shapley
value the only player that will receive the weight of edge e is player i or
player j, whichever is not the first to be added to the permutation. Players

i and j appear after each other an equal number of times so they will split

18
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the value of edge e, each receiving half of the weight of edge e. So the
Shapley value for player i is 1/2 * (the sum of the weights of the edges

adjacent to vertex i). (Onep Edel Asi&on)

Proof for t-value: To find the T-value for player i, first we find the
marginal vector M(v) corresponding to v with
M;(v) = v(N) - v(N - {i})
= (the sum of the weights of all edges of the graph) - (the sum of
the weights of the edges which are not adjacent to i)
= the sum of the weights of the edges adjacent to i.
Next the remainder for player i in the coalition S is calculated with
RS =v(S)- ¥ M)
jes
= (the sum of the weights of the interior edges of S) - (the
sum of the weights of the edges adjacent to j for each
je (S-{i}).
Set m(v) = max R(S, i). This occurs when S is a singleton since for each
set with more than one member, the sum of the weights of the edges
adjacent to j for each j € (S - {i}) is at least as large as the sum of the
weights of the interior edges of S. So mi(v) = 0 foralli € N. Now let
n
v(N) - 3 mqV)

i=1
o, =

T M)-Y myv)

i=1 i=1

18
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= (the sum of the weights of the graph)/(2* the sum of

the graph)
= 1/2.

Then T(v) = my(v) + o, (M;(v) - my(v))

=1/2* (the sum of the weights of the edges adjacent to i).

(Omnep Eder Asi&on)

Sufficient conditions for nucleolus to equal Shapley value

Consider a game (N, v) defined as follows:

(Example 1:)

Note that this game is not two-additive. The nucleolus and the Shapley
value for this game are both (1, 2, 2, 1). If we look at the excess vector

and consider each f;, we see that for every S c B, SCis also in B, so each
B, is balanced. However, if we look at a game defined by

(Example 2:)
v(d) =0
v(1)=0
v(2)=0
v(3) =0
v(4)=0



v(12) = 3/2 v(134) = 5/2
v(13) = 3/2 v(234) = 4
v(14) = 1/2  v(1234) = 13/2.

The nucleolus for this game is (1, 2, 2, 3/2). However the Shapley value is
(13/12, 2, 2, 17/12). There is a slight difference in the [3;'s for these two

games. In the first game B4 = {1,4,12,13,24,34,123,234} and B, is all of
the other coalitions. In the second game B4 = {1,24,34,123}, Bs =
{4,12,13,234}, and [3; is the other coalitions. In both games each J; is
balanced.

Since we noticed that in the first game, S c B; implied that S¢ < 3, and

this did not occur in the second game, we wondered if this was a sufficient

condition for ¢ = v.
Theorem: Suppose v is the nucleolus of game (N,v) and B, ..., Bq is the
array determined by v. Ifforallje {1, .., g}, S e [3;implies S¢ e B;, then

o =V.

Proof: Assume v is the nucleolus for game (N, v) and for each S € Bj, Ste
B This means

e(v, S) = e(v, S°).

WS- ¥ v,=us)- ¥ v,
ieS jESC

If IN| is even, then by definition

0= 3 D, 6y u(s - ip)]

S3i

21



- ¥ (S'l) (’”) v(S) - v(S - {i}) + v((S - {iD)9 - V(SS]

S3i ISI<—

_ (s-1)!(n-s)!
= X == vy SZ Ve X - XY
$3i, ISI<- JES jeS -{ih jes-°  Jjes

L2y, 3 (D).

n!
S3i, IS|<2
2

If IN| is odd, it can be shown similarly that

g2y, 3 G, 5 EDIG0)

n!
AETA |S|<— S3i, ISI-——

Case 1: (for [N| even)

For ¢; = v;, we need to prove that

(s-Di(n-s)! _ 1
z s)'ns

S>i, ISIS— 2
2
We know that
n
2
¥ gl (n-1)! 4 (s-D)!(n-5)!
S3i, |S|< n! (s-1)!(n-s)! n!
T2 s=1

The part of the term "(n-1)1/[(s-1)!(n-s)!]" is the number of coalitions of
size s which contain playeri. So this equation reduces to 1/n for each s,
of which there are n/2 yielding (1/n)(n/2) = 1/2.

22
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-1\ (n-5)!
0:=2v; Y, L("’S)'=(2vi)(%)=v
51, IS1<2 n

Case 2: (for |N| odd)

As in case 1, we know that

(s-D!(n-s)! _ (n-1)! 4 (s-1)!(n-s)!
e .

n! (s-1)!(n-5)! nl

$3i, |S]<2
2

For |S| = (n + 1)/2, we get
-1 ! :
v 3 S

" 2n
S>i, ISI-—

For all S with s < n/2, the term "(n-1)V/[(s-1)!(n-s)!]" is the number of
coalitions of size s which contain playeri. Fors = (n + 1)/2 only half of
the coalitions of size s are considered so the coefficient needed is

(n-1)/2*[(s-1)!(n-s)!]. Addmg these we get:
2 wt 2n 2

So ¢; = (2v))(1/2) = v;. (Onep Eder Aer&on)

We had also conjectured that if v = ¢ then either the game is
completely symmetricor forallje {1, ...,q},ifS € Bj then S€ e Bj.
However we were able to find a counterexample to show that this is not

true. Consider the game defined as follows:

(Example 3:)
v(id)=0 v(23) =5
v(1)=0 v(24) = 4

e



v(2) = 5/2 v(34) =4
v(3) =5/2 v(123) =8
v(4) =0 v(124) =4
v(12) =4 v(134) =4
v(13) =4 v(234) = 8
v(14) =0 v(N) =10

The nucleolus for this game is (1, 4, 4, 1), which is also the Shapley value.
It is easy to see that this game is not completely symmetric, so we must
just check each E)j until we find one which does not contain the
complement of every set which it contains.

By =1{1,4,12,13,24,34,123,234}

Bo =1{2,3}
B = {14,124,134}
B4 = {23}

Bo, B3, and B, all contain a set without containing that set's complement.
Somehow the constraints on our conjecture must be broadened to contain
more classes of games.

To summarize the results we have just presented, we give a Venn

diagram depicting the classifications of the previous examples.

24



Figure 3.
1. The set of all classes of games in which each B, is balanced.
2. The set of all games which are completely symmetric.
3. The set of all games in which S € §;=> S¢e B

4. The set of all games in which ¢ = v.

Example 1 lies in sets 1, 3, and 4; Example 2 is a game of class 1; and
Example 3 is in set 4.
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Methods
There are many different allocation methods each possessing
various properties. Consider a cost game (N,c) where i € N.
Let the separable cost of player i in game v be defined as,
si = 6(N) - ¢(N- {i}
In other words, s; is the marginal cost of player i. Also, define the

remaining benefit to i as,
= c(i) - S;

The Separable Costs Remaining Benefits (SCRB) method is then given by,
Kym 8t [C(N) - 2s12|
N

27

where x; is the amount (cost) being allocated to player i. This method

distributes to each player their separable cost while the remaining
benefits are given out proportionally.

Another method, which is based on the same idea as SCRB, is Equall
Allocation of Nonseparable Costs (EANC). As one might guess from the

name, each player pays their separable cost and is then given an even share

x,-=s,-+%[c(N) - %s]].

Recall that the nucleolus is the vector, x, that lexicographically

of the nonseparable costs:

maximizes the vector of excesses/savings arranged in ascending order

where the excess of a coalition, S, is defined by
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e(x,S) = c(x)-z X;

ieS§
We can now define the per capita nucleolus which is the same as the

nucleolus except that the excesses are now defined by

e(x)- > *;

ie S
|S]

Also recall the Shapley Value, which takes the average over all

e(x,S) =

possible orderings in which a player can enter the grand coalition, i.e.

x=y Bl ”r’l('” IS0 sy - oS - 4]

SeN

Properties

Although all of these methods, and many others, exist it is difficult
to justify why one method is fairer thah another. This leads us to the
basic properties all of which an ideal supermethod would possess if one
existed. If we consider a cost game (N, c) the following properties may be
defined:

(1) efficiency - all costs are allocated

Z x{c) =c(N)
jeN
(2) symmetry - equal players get equally allocated
ifc(SU{i}) =c(SU{j}) forall S € (N -{i,j}) then
x;(c) = xj(c)
(3) proportionate - allocation is independent of unit of money used

if ¢(S) = ac(S) for all S ¢ N, then x;(c") = ax;(c)

a7
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(4) separates separable costs (ignores irrelevant costs)

if b € R™" and a game ¢' is defined as

c'(S) =c(S) + Z b;

ie§
then, x;(c") = x;(c) + b
(5) dummy pays all - no savings created, no savings received
if ¢(S U {i}) = c(S) + c(i) for all coalitions
S that do not contain i, then we call i a dummy and
x(c)=c()
(6) individually rational - no player can do better by themselves
Xij(c) = c(i) (x(c) 2 v(i) in a value game)
(7) coalitionally rational - no coalition can do better on their own
i. e. if core(c) = @, then x(c) € core(c)
(8) aggregate monotone - an increase in ¢(N) (the grand coalition)
does not cause a decrease in any players allocation
(9) coalitionally monotone - an increase in the cost of any
particular coalition T, does not cause a decrease
in the allocations of all playersie T
i. e. letc' be the game in which the increase(s) occur

if ¢(T) < ¢'(T) for some T, and ¢(S) = ¢'(S) for all S=T then fori e T,

x{€) Sx{c")
(10) strongly monotone - for every fixedie N
c(S) - ¢(S - {i}) =¢'(S) - ¢'(S - {i}) for all S containing i

28
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then, x;(c) < x;(c")

Note: strongly monotone=> coalitionally monotone=> aggregate monotone

SCRB SV EANC Nucleolus PC Nucleolus
efficient yes yes yes yes yes
symmetric yes yes yes yes yes

roportionate yes yes yes yes yes
separate separable costs yes yes yes yes yes
dummy pays all yes yes no yes no
individually rational yes yes no yes yes
coalitionally rational no no no yes yes
aggregate monotone no yes yes no yes
coalitionally monotone no yes yes no no
strongly monotone no yes no no no
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The chart on the previous page shows Which‘properties each of the methods
being discussed possess. A 'yes' answer indicates that this method has

that particular property for all games.

Young's Theorem

Along with these properties follow many different theorems which
classify or characterize various methods axiomatically. My specific
interest has been methods that are both core and monotone. Itis
interesting to note that although no methods of this type are known at this
point the following was discovered by P. Young.
Theorem: (Young, 1985) There exists no efficient allocation method
which is core and coalitionally monotone on games of |N| > 5.
Proof: (by counterexample) Consider the cost function ¢ defined on
N=({1,2,3,4,5} as follows:

note that c(ijk. equals the cost of coalition {ij,k..}

)
c(S4) =¢(35) =

c(S,) =c(134) = 9
c(Sy) =c(123) = 3
c(S,) =c(245) =9
c(Sg) =c(1245) =
c(Sg) =c(N) = 11
For any other existing coalition we define their cost, ¢(S), to be the
min c(Sp)
§;08
where 1 <k <6, and let c(@) = 0. If x is in the core of ¢, then
Y xi<c(Spfor1<k<s
Sk
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adding these five equations we get,
3inS 3= ins 11
N N

However, we see by efficiency that the equality must hold in the latter
equation. This in turn implies equalities for the previous five equations,
which have a unique solution of x = (0, 1, 2, 7, 1) (i. e. any core method
would choose this point).

Compare the game ¢' which is identical to ¢ except Cc'(Sg) =C'(Sg) =12.

The same procedure above leads to a core with a unique point of
x=(3,0,0,6,3). Because the allocation of both player 2 and player 4
decrease when the cost of some of the coalitions containing them
monotonically increase, this shows that no core allocation method is
coalitionally monotone for n = 5, and can be extended for n > 5 by simply
adding dummy players to the game c.

Core and Coalitionally Monotone Methods

After examining Young's Theorem, one cannot help but wonder
whether or not there are allocation methods that are core and coalitionally
monotone on three and four person gamés. For the most part, this has been
the heart of my research this summer, which has brought about the

following results.
Theorem: The nucleolus is monotone on 3-person games.

Proof: If the vector x is the nucleolus, then all of the collection C,, made
up of the sets of excesses, [3;, will be balanced. In order to determine

whether or not x is the nucleolus, we only need to check the collections up
to the first K™ sets of excesses, where K" is the point where x can be
uniquely determined. Suppose we have a 3-person game with excess vector
e(x). Then we can define the following five cases for 31 and B,:
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By Bz

1. {1,2,3}

2. (121329

3. {1, 23} {2,3}
4. {1,23} {12,13}
5. {1,23) {2,13}

Of course, other permutations exist, but only bring about something
symmetric to the above cases. Therefore, we can say that these five cases
make up all possible cases because of the following:

Since C4 = B4, B4 must be balanced. This implies that B, contains a
minimally balanced set {1,2,3}, {12, 13, 23}, or {1, 23}.
(1) if B4 contains {1,2,3} the x is defined as follows:

- V(N) +2v(1) - v(2) - v(3)
b 3

e V(N) + 2v(2) - v(1) - v(3)
= 3

X3= V(N) +2v(3) - v(1) - v(2)
3

(2) if By contains {12,13,23} then x is defined as
follows:

Xy = v(N) +v(12) + v(13) - 2v(23)
3

_Y(N) +v(12) + v(23) - 2v(13)
Xo= 3

X3= V(N) + v(13) + v(23) - 2v(12)
3

(3) if B4 contains {1,23} then one of the following is
true: :
a. it also contains {2, 3} OR 3, contains {2, 3}
and x is defined by:
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o= V(N) +v(1) - v(23)
1=

2
Xy= V(N) + 2v(2) +v(23) -2v(3) - v(1)
4
N [ e v(23) + 2v(3) - 2v(2) - v(1)
4

b. it also contains {12,13} OR [, contains {12,13}
and x is defined by:

Xy = v(N) +v(1) -v(23)

.
Xp= Vv(N) +v(23) +2v(12) - v(1) - 2v(13)
4 «
X3= v(N) +v(23) +2v(13) - v(1) - 2v(12)
‘ 4

c. italso contains {2, 13} or B2 contains {2,13}
and x and x is defined by:
_v(N) +v(1) -v(23)
X1 5
Xq= v(N) +v(22) -v(13)
x3_v(23) +2v(13) - v(1) - v(2)
2

In all of these cases X is uniquely determined.
Each of the previous equations for x; do not have any negative

coefficients of coalitions S, which contain that specific player, i. Itis
also known that the nucleolus is a continuous function. Therefore, we may
conclude that if coalitions containing player i increase, then x; cannot

decrease.
This can also be extended to a generalized nucleolus. Let the excess

of coalition S be defined as:

v(S)- > xl]

ieS

#(x.8) = [

WS
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where w is a given vector consisting of positive values dependent on the

size of the coalition, S. Then, let e(x) be the vector of excesses ordered
from largest to smallest. The w-nucleolus is the imputation that
lexicographically minimizes e(x) over the set of imputations. For example,
the original nucleolus has a w = (1, 1, 1) on 3-person games, and the per
capita nucleolus has aw = (1, 2, 3) on 3-person games. By the same
reasoning used on the previous proof, we can say that the following about

the w-nucleolus.

Theorem: The w-nucleolus is monotone on 3-person games, if and only if,
Wy < Wo.

Proof:

If we look at the formulas of x; for the first four cases(respectively), we

see again that there are no negative coefficients for coalitions containing

playeri. (Note: w>0)
Case 1 and Case 2 yield the same formulas from above.

Case 3:
(W %V - 1) v(N) +2v(1) +¥(2) - v(3) - 2”‘%} ¥(23)
% i)
Wa
Vv(N) + (W%v2+ 1)(v(2) - v(3)) + w%vzv(23)
Hor3
w2
v(N) ++" %v 2v(23) +2v(3) - v(1) - 2v(2)
X3=
)
Case 4:
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V(N) +2v(1) +2W%v v(1)- 2v(23)
2

X1=

2wyt 1
wop(N) - w%) 17D +(23) H{wr1(12) - v(13))
i 2wotrl
w(N) - W%vzlv(l) +v(23) +(w2+le(13) -v(12))
e 2w+l

So far, the w-nucleolus has been monotone for the above cases. In case
five, below, we can see that the formula for Xg contains a coefficient of

(wo-wy) for v(N). This implies that if w, < w, then we can construct a

game in which the w-nucleolus is not monotone. In fact, this also implies
that we can construct a game in which the w-nucleolus is not aggregate
monotone, also. Since, this is the only place where a possible negative
coefficient can occur, we can say that if the w-nucleolus is not monotone,
then is must be the case where w;, < w;.

Case 5:
ol wv(N) +wqv(1) -w v(23)
Wi+wy
e wv(N) +wv(2) -w v(13)
Wi+Wwy
_(wrw V) -wdv(1)+1(2)) +w (w(23)+v(13))

Wi+wWs

Theorem: The nucleolus is not monotone on 4-person games.

Proof: (by counterexample)
Consider the following value game, v, on N = {1, 2, 3, 4}:

*v(1) =0 v(12) =0 *v(123) = 1
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v(2)=0 v(13) =0 v(124) =1

v(3) =0 v(14) =0 v(134) = 1

v(4)=0 v(23) =0 v(234) = 1
*v(24) = 1 V(N) =2
*v(34) = 1

The nucleolus , v = (.25, .5, .5, .75). Now consider the same game, but
increase v(123) = 2. The nucleolus in this new game, v', v = (0,1,1,0).
Notice that although we raised the value of v(123), X4(v') < x4(v). Thus, we

may conclude that the nucleolus is not monotone on 4-person games.

Of course, the question arises as to whether or not this proof can be
extended to all core allocation methods, or maybe some class of core
allocation methods. If we define a strictly core allocation method to be
a core allocation method that always yields an allocation in the relative
interior of the core (never yielding a point on the boundary of the core)

whenever the core exists.

Theorem: There exists no efficient allocation method which is strictly
core and monotone on 4-person games.

Proof:

If we again examine the original game, v, from above, we can see
that there is more than one point in the core. For example, it is obvious
that the points t=(0, 1, 1, 0), y=(.5, .5, .5, .5), and z={.25, .5, .5, .75) are all
in the core(v). However, in the game V', described above, it can be easily
shown that s=(0, 1, 1, 0) is the unique point in the.core(v'). Since, t;(v)=0,
t(v) lies on a boundary point of the core(v), and for this reason any strictly
core allocation method would not choose this point. Thus, once v(123) is
increased, these strictly core methods are forced to choose s=(0,1,1,0).
Because this leads to a decrease in the value allocated to player 1, we can
then conclude that there exists no efficient allocation method that is
strictly core and monotone on 4-person games.
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The above counterexample was discovered by examining the possible
minimally balanced sets on 4-person games. Notice By={1,24,34,123}is

minimally balanced, and {1} < {123}. The set, T, is the unique set (except
for other permutations of T) that has this subset property. Looking at

Young's counterexample, we can see that his set, B = {35,134,1245,123,

245}, also has this subset property, namely, {245}  {1245}. Further

examination lead us to the following:

Conjecture: The nucleolus is monotone on a game (N,v), if and only if the
sets, f3;, given by the excesses, do not contain coalitions S and T such that

ScT.

Proof: (partial) (1) subsets = nonmonotonicity
Suppose we have a set 3, given by the sets of excesses, and

coalitions S and T such that:
S, Te ByandScT.

Bk yields equations in the form:
o +x(R) =v(R), where x(R) = Z %

i€eR
& +x(T) =v(T), where x(T) = Z X;
jeT
and we know:
Y x=v(N)
ke N

Because we are only interested in the coefficients of V(T), we can put the
above equations in a generalized form:

a+x(R)=0
o+ x(T) =1
X(N)=0
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We know there exists a collection Cy which is a balanced set with
balancing vector y > 0. Then by the following steps:
a. Multiply each of the o + x(R) = 0 by the appropriate yg
b. Multiply o + x(T) =1 by y1
c. Add results fromaand b

d. Subtract the equation x(N) =0
one can arrive at:

Re ﬁk 2 }’R
Re B
substituting yields:
2(8) = ___L
2 YR
R e B

Since y > 0, we see that the coefficient of v(T) will turn out to be a
negative value for at least one player, i € S. Thus, we can conclude that if
there exists a B such that S, T € B and S < T, then the nucleolus is not

monotone.

(2) nonmonotonicity = subsets

We believe, but have yet to prove, that if the nucleolus is not monotone on
a given game (N, v) then there must be coalitions S,Te B such that S T.

Conclusion

Our original goal was to find allocation methods that are core and
monotone. Although this particular goal was not achieved, we did show for
some classes of games there are certain core methods that are monotone
and certain methods that are not. Further work should focus on

determining whether all core allocation methods are monotone on 4-person
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games. In addition, one could hope for a proof of the conjectured

classification of all games for which the nucleolus is not monotone.
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Nucleolus Algorithm
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