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ABSTRACT
There are many different allocation methods for cooperative
games. The faimess of these methods can be measured by the
properties they possess. Because there is no "ideal method"
that has all of these properties, deciding which method is the
fairest is somewhat subjective. This project examines which
methods have each property and includes some of the
interesting proofs. It also discusses how some of these
properties relate to one another.
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Introduction

An n-person cooperative game is a pair (N, v) where N ={1, 2, 3,...n} is the
set of players and v is a real valued function on all coalitions S C N. Define the vector x
= (X1, X2, X3, . . . Xp) Wwith real components to be an allocation of a game where Xj is the
value being allocated to player j .

An allocation method is a function @ which, given any game (N, v), assigns an

allocation x such that
2. xi = v(N) . (Note that 6;(N,v) = x;)
N

The latter condition is referred to as efficiency, and will be assumed for any allocation
discussed in this paper.

There are many different allocation methods for cooperative games. The fairness of
these methods can be measured by the properties they possess. Of course, because there is
no "ideal method" that has all of the properties, deciding which method is the fairest is
somewhat subjective. As seen in appendix A there is an argument for each property
explaining why a method needs to have this particular property in order to be fair.

This paper will examine which methods have each property and will include some
of the more interesting proofs. It will also discuss how some of these properties relate to

one another.



SECTION I



EAJV_EANV PANV SV N PCN

EFFICIENT yes | yes | yes| yes| yes| yes
SYMMETRIC yes | yes | yes| yes| yes| yes
PROPORTIONATE yes | yes| yes| yes | yes| yes
COVARIANT yes | yes| yes| yes | yes| yes
CONTINUOUS yes | yes| no | yes| yes| yes

INDIV. RATIONAL |yes| no | yes| yes | yes| yes
GROUPRATIONAL |no | no | no | no | yes| yes
STABLE no | no | no | no | yes| £2¢
INDIV. REASONABLE|no | no | no | yes| yes| yes
GROUP REASONABLE[no | no | no | no | no| no

INDIV. SUB. FREE no | no | yes| yes| yes| yes

S. CONSISTENT no | no | no | no | yes| no
H & M CONSISTENT |no | no | no | yes| no| no
AGG. MONTONE yes | yes| no | yes| no| yes

GROUPMONOTONE |yes| yes| no | yes]| no| no
STRICTMONOTONE |no | no | no | yes| no| no
STRONGMONOTONE |no | no | no | yes| no| no
ADDITIVE yes]| yes| no | yes| no| no

The above chart specifies whether or not that specific method has the listed properties. The
abbreviations are as follows:

EAIJV - equal allocation of joint value, EANV - equal allocation of nonseparable
value, PAJV - proportionate allocation of joint value, SV - Shapley value, N -
nucleolus, and PCN - per capita nucleolus

Also note that any theorems or propositions that are referred to are contained within
Appendix A.

Rationality

As we can see from Appendix A, rationality properties are important because if a
method does not possess this property, a player or group may not be willing to
cooperate. If the game is convex, we will see that it would be most beneficial to use the

Shapley value since that would allow us to obtain a monotonic allocation as well as group



rational. Otherwise, the nucleolus or per capita nucleolus would be sufficient enough to
obtain group rationality along with maximum amount of other properties.
Equal allocation of joint value is individually rational since OEATV(N,v) = v(i) +

1m (v@N) - Y, v()), and by superadditivity we may conclude that Y, V) < v(N),
jeN \ jeN

Thus, O;EAV > v(i).

Equal allocation of nonseparable value is not individually rational because if we
consider the game v(123) = v(23) = 1, v(12) = v(13) = v(1) = v(2) = v(3) = 0, then
OEANV(N,v) = (-1/3, 2/3, 2/3). Notice that -1/3 = 6;EAIV <v(1) = 0. This example can
also be used to show that equal allocation of nonseparable value is not group rational, since
there exists a nonempty core. For example the point (0, 1/2, 1/2) is in the core of this
game.

Proportionate allocation of joint value is individually rational due to the fact that,
: T; E T;
0PAIV(N,v) = v() + Z‘ : [Vv(N) - % vl 5 il Dicasse -——2‘ - 20 and
jeN jeN
Y, () < VM) due to superadditivity.
jeN

By their definition, we can state that the nucleolus and the per capita nucleolus are
individually rational.

Z (s-1)!(n-s)! : :
Because T a =1and V(S) - v(S-i) 2 v(i) for all S C N, the Shapley
ScN

value is individually rational.

Equal allocation of joint value does not possess group rationality. This can be
proven by considering the veto power game v(1) = v(2) = v(3) = v(12) = 0, v(13) = v(23)
=v(123) =1. The only group rational point for this game is x = (0, 0, 1), however,
0;EAIV(N,v) = (1/3, 1/3, 1/3). Therefore, we can conclude that this method is not group
rational.

Considering the four player game v(1) = v(2) = v(3) = v(4) = v(14) = v(23) = 0,
v(12) = v(13) = v(24) = v(34) = v(124) = v(134) = v(234) = 1, and v(123) = v(N) = 2.



OPATV(N,v) = (2/3, 2/3, 2/3, 0), but the only group rational point is ( 0, 1, 1, 0) therefore
proportionate allocation of joint value is not group rational.

The Shapley value makes the allocation ¢ = (.167,.167, .667) for the players in
the veto power game. The only group rational point in this game is (0, 0, 1), therefore the
Shapley value is not group rational. We can also note, by theorem 3, that the Shapley
value is not group rational because it is group monotone.

If the core(N,v) is not empty, there exists an imputation x with a nonpositive
excess vector. Because the nucleolus minimizes the maximum excess and the per capita
nucleolus uses the same method with the excess divided by a positive value, they must also
have a nonpositive excess vector. This would imply that the nucleolus and the per capita

nucleolus is in the core of the game. Therefore, they are both group rational.

Stability

Without stability a method may not be able to yield an allocation that is free from
credible objections. This could cause a problem between two or more players because if
one player is not convinced that the chosen allocation is the best for him, he may not be
willing to cooperate. Of course, if an allocation is in the core of the game then this would
be stable.

Equal allocation of joint value is not a stable method. This can be proven using the
veto power game, v(1) =v(2) =v(3) =v(12) =0 and v(13) =v(23) =v(123) = 1.
OEAIV(N,v) = (173, 1/3, 1/3), but player three can make a complaint to either player 1 or 2
without these two players being able to counterobject. For example, player three could
choose the allocation y = (1/3, 0, 2/3) with the coalition {1, 3}, and player 2 could not
counterobject since to do so he would have to cooperate with player 3.

Using the game v(1) = v(2) = v(3) =v(12) =v(13) =0 and v(23) =v(123) =1,
OEANV(N,v) = (-1/3, 2/3, 2/3). So, equal allocation of nonseparable value is not stable

because in this game player 1 could complain against player 2 using the coalition, S = {1}



and the allocation y = (0, 1/3, 2/3). Player 2 can not object since v(2) <y;,v(12)<y; +
y2,and v(23) <y, +y3. Also, player 3 could not object because v(3) <y3, v(13) 2 y; +
y3, and v(23) <y + y3.

Examining the game used to show that proportionate allocation of joint value is not
group rational, we can see that this game also shows that this method is not stable. For
example, OPAIV(N,v) = (2/3, 2/3, 2/3, 0) which means player 2 could make a complaint
against player 1 with the allocation y = (0, 1, 1, 0) and the coalition S = {2, 3}. Because
the allocation y € core(N,v), we can conclude that no counterobjection can be made.

Using the veto power game once again, we can show that the Shapley value is not
stable. Because ¢ = (1/6, 1/6, 1/3), player 3 could make a complaint against either
players 1 or 2 using the allocation y = (0, 1/6, 5/6) with the coalition S = {2, 3} or the
allocation y = (1/6, 0, 5/6) with the coalition S = {1, 3}, respectively. Neither player
would be able to counterobject without using player three in the process.

The following proof will exhibit that the nucleolus is a stable method. Suppose
there is a game (N,v) that the nucleolus assigns the allocation V = (xy, X3, ... X,) where
X1, X2, ... Xp are real values satisfying efficiency. Suppose x is not stable. Then there
exists an objection (y, S) of a player i against a player j for which there is no
counterobjection, (z, T). If there is a coalition T satisfying i¢ T, jeT,and e(x, S) <

e(x, T), then the allocation z is defined by
Yx, if k € SNT
z =\ Xxgifke T\S
o,ifke T

where 8 is defined so that 2 = VN), forms a counterobjection with T. Since it
keN

was assumed that no such counterobjection exists, e(x, S) > e(x, T) forall T satisfying

i¢T and jeT. So,increasing x; and decreasing x; by small amounts would cause e(x)
to decrease lexicographically. Therefore, x cannot be the nucleolus, which is a

contradiction. Thus, the nucleolus is a stable method.



Reasonableness

Equal allocation of joint value is not individually reasonable since QEATV(N,v) =
(573, 5/3, 5/3) for the game v(i) = 1, v(12) = v(13) = 2, v(23) =4, and v(N) =5. This
would mean that the max(v(S) — v(S-1)),forall S31,is v(N)-v(23)=1< 5/3 =x;.
This game also shows that equal allocation of joint value is not group reasonable because
although there exists a nonempty set of group reasonable point (5/3, 5/3, 5/3) is not in this
set. For example, (1, 2, 2) is in the set of group reasonable points.

The game v(i)=0forall ie N,v(ij)=5 forall i#je N, v(123) =v(124) =9,
v(134) = 8, v(234) =5, and v(N) = 10 proves that equal allocation of nonseparable value
is not individually reasonable. This is because OEANV(N v) = (21/4, 9/4, 5/4, 5/4 ) which
makes the max(v(S) — v(S—i)), forall S3i, v(N)-v(234) =5 < 21/4 = x;. As stated
above, because a set of group reasonable points exist for this game, for example (7/2, 5/2,
2, 2) is group reasonable, equal allocation of nonseparable value is not contained in this
set.

Proportionate allocation of joint value allocates 0;PAJV(N,v) = 25/4 for the game
v(i)=0forall ie N, v(ij)=5 foralli #je N, v(123) = v(124) = 9, v(134) = 8, v(234)
=35, and v(N) = 10. Therefore, because x; =25/4 2 5 = v(N) — v(234) this method is
not individually nor group reasonable.

The Shapley value is individually reasonable because it can never be greater than the
maximum marginal contribution. This is due to the fact that the Shapley value determines
all of a players marginal contributions and then takes the weighted average of these values.

By the following proof, the nucleolus is individually reasonable:

Proof:
Suppose that the nucleolus is not individually reasonable, then there exists an i € N such
that,

xj > max {v(S) - v(S-i), forall S 3i} = x; > v(S) —v(S-i), forall S 31,



but  v(S) - v(S-i) = e(x,S)—e(x, S-i) +x; = e(x, S-i) > é(x, 8).

Then consider the allocation y such that y;=x;+¢€, forall j#ie N, and

yi = X; — (n-1)€, where € is small enough to preserve the order in the excess
vector, e(x). This implies that e(y, S-i) < e(x, S-i), therefore y is
lexicographically less that x, therefore x could not have been the nucleolus which

is a contradiction. So, we conclude that the nucleolus is individually reasonable.

Using the same reasoning we can conclude that the per capita nucleolus is also
individually reasonable since if the per capita nucleolus is not individually reasonable,
then there exists an i € N such that e(x, S-i) > e(x, S) for all S < N. If the largest

excess (which cannot contain i) is nonnegative, then for the corresponding coalition {S-i},
e(x, S-i) > e(x, S)
|S-il N

and soa y can be constructed as in the previous paragraph for which e(y) < e(x). This

contradiction to x being the per capita nucleolus implies that all of the excesses are
negative, that is, x is group rational. But the x;=v(N) - 2 Xj £ v(N) - v(N-i), and so

x is individually reasonable. e

Because of the game v(N) =10, v(S) =5if S = {4,5} or |S| 2 3, and v(S) =0
otherwise, the Shapley value is not group reasonable. (1.833, 1.833, 1.833, 2.25, 2.25)
is the allocation given by the Shapley value which implies that x; + x2+x3=5.5 2 5=
max {v(S) - v(S-i): forall S 2{1,2,3}}. Of course, there does exist a group rational
point for this game given by the nucleolus, v = (5/3, 5/3, 5/3, 5/2, 5/2).

Considering the 6-player game:

v(l)=v(4)=v(6)=0.2 v(2)=v(3)=v(5)=0
v(12) = v(13) = v(24) = v(34) = v(15) = v(45) = v(26) = v(36) = v(56) = 0.2
v(23) =v(25) =v(35)= 0 v(14) = v(16) = v(25) = v(46) = 0.4

v(123) =0.2 v(124)=0.4 v(125)=3.1 v(126)=0.4 v(134)=3.1 v(135)=0.2
v(136) =0.4 v(145)=0.4 v(146)=3.1 v(156)=04 v(234)=0.2 v(235)=0.0



v(236) =3.1 v(245)=3.1 v(246)=3.1 v(256)=0.2 v(345)=0.2 v(346)=0.4
v(356) = 3.1 v(456) =0.4 v(1234)=3.1 v(1235)=3.1 v(1236) =3.3
v(1245) =3.3 v(1246) =3.1 v(1256)=3.3 wv(1345)=3.1 v(1346)=3.3

v(1356) =3.3 v(1456) = 3.1 v(2345) =3.1 v(2346) = 3.3 v(2356) = 3.1 v(2456)=3.3

T

v(3456) = 3.3 (@4}_{=2ﬂ7§ v(12345) = 33 9(12346) = 3.5 v(12356) = 3.3
v(12456) =3.5 v(13456) =3.5 v(23456)=3.2 v(123456)=6

the nucleolus and per capita nucleolus yield the allocation V=VPC=(1,1,1,1, 1, 1).

However, this is not a group reasonable allocation. This is because the max {v(S) —

v(S—{235}) } = 2.9, however x; +x3+ x5 = 3. Note that the Shapley value ¢ = (1.067,

0.927, 0.920, 1.067, 0.927, 1.093) is a group reasonable point. We conclude that the

nucleolus and the per capita nucleolus are not group reasonable.

Consistency

By theorem 5, the Shapley value is the only method that is Hart & Mas-colell
consistent. Also, because of theorem 4, the nucleolus is the only method which is
Sobolev consistent. This means all of the other methods discussed in this paper are not

Hart & Mas-colell consistent.

Monotonicity

Many times in real life situations the values assigned to a given player may change,
therefore monotonicity may play a big factor in any decision. Of course, any player who
receives less that they previously did\, while their value has increased will not consider the
allocation fair. In this type of situations we will see that the Shapley value would be the
best method to make the allocation because it is easy to show that the Shapley value
satisfies all of the monotonicity properties, and by theorem 2, none of the other methods

are strongly monotone.



Equal allocation of joint value is aggregate monotone since, SiEAIV(N,v) = v(i) +
n-l—(v(N) — Y, v(j)) cannot decrease if v(N) or any v(S), where S 31, is increased. This

jeN
also implies that equal allocation of joint value is group monotone. Also, if we substitute
v(N) — v(N-i) for s; in the formula for equal allocation of nonseparable value, then

0iEANV(N.,v) can not decrease when v(N) or any v(S), where S 3 i, is increased. In
other words, QiEANV(N v) = v(N) — v(N—i) + %—V(N) -v(N) - %#EN v(S-j)) which
reduces to rl—lv(N ) + ln;nv(N—i) + —111— 2 v(N—j) . In the last equation we can see that the
i#jeN

only terms with a negative value are the terms that do not contain i. Therefore, equal
allocation of nonseparable value is aggregate and group monotone. Now, using the
following counterexample it is easy to see that equal allocation of joint value is not strictly
monotone. If we consider a game similar to the veto power game only v(1) has increased
to one, the allocation given by this method is still, 6EATV(N,v) = (1/3, 1/3, 1/3). By the
same reasoning, equal allocation of nonseparable value is also not strictly monotone since
on the revised game just described 6EANV(N v) = (1/3, 1/3, 1/3).

By the following proof, the per capita nucleolus is aggregate monotone:
Proof: Consider two games (N, u) and (N, v) such that v(N) = u(N) + €, and v(S) =
u(S) otherwise. If the per capita nucleolus allocates x = VPC(N, u) = (x1, X, . . .Xp) then
y =VPC(N, v) = (x1+€/N, x2+€/N, . . x,+€/N). Since pce(x) is lexicographically
minimal, then pce(y, S) must be lexicographically minimal because pce(y, S) = pce(x,S)
+ &/N, and €/N is just a constant. However, by theorem 3, the per capita nucleolus is not
group monotone because it is group rational. This also implies that this method is not
strictly monotone. This is easily displayed by the following example, recall the game v(1)
=v(2) = v(3) = v(4) = v(23) = v(14) = v(23) = 0, v(12) = v(13) = v(24) = v(34) = v(134)
=v(234) =v(124) =v(123) = 1,and v(1234) = 2. The per capita nucleolus of this game
is VPC = (1/2, 1/2, 1/2, 1/2), however if we increase v(123)to 2 then VPC = (0, 1, 1, 0).

We can see that although v(123) increased, player 1's allocation decreased. Not only

10



does this example exhibit that the per capita nucleolus is not strict monotone, but also that
it is not group monotone.

Proportionate allocation of joint value is not aggregate monotone and this is shown
by the veto power game v(1) =v(2) =v(3) =0, v(12) = 6, v(13) = v(23) = 24, v(123) =
30. BPAIV(N,v) = (5, 5, 20). Now, if we look at the same game (N,v) except v(N) is
increased to 31, then OPATV(N,v) = (5.564, 5.564, 19.872). Notice that although v(N)
has increased x3 has decreased since 19.872 < 20. By proposition 2, the above statement
implies that this method is also not group or strict monotone.

Using the following two six player games we can see that the nucleolus is not
aggregate monotone. Consider the game:

v(i)=0,forallie N v(ij) =0, foralli#je N |
v(123) =0.75 v(124) =050 v(125)=0.65 v(126)=0.35 v(134)=0.25
v(135) = 0.25v(136) = 0.85 v(145) =0.55 v(146) =0.25 v(156) = 0.65
v(234) =0.45 v(235) =0.15v(236) = 0.45 v(245)=0.85 v(246) =0.50
v(256) = 0.25 v(345) =0.654 v(346) =0.0v(356) =024  v(456) = 0.63
v(1234) =1.50 v(1235)=1.85 v(1236) =1.65 v(1245)=1.654 v(1246)=1.50
v(1256) = 1.65 v(1345)=135 v(1346)=145 v(1356)=1.6 v(1456) = 1.66
v(2345) = 1.68 v(2346) = 1.55 v(2356) = 1.85 v(2456) = 1.33 v(3456) = 1.77
v(12345) =2.75 v(12345) =2.26 v(12346) =2.56 v(12356) = 2.95
v(12456) = 2.65 v(13456) =2.75 v(23456) =133 v(123456) =4

The nucleolus for this game is V(N,v) = (0.625, 0.625, 0.695, 0.525, 0.785, 0.745), and
if we consider the same game and increase v(N) by 0.1 the nucleolus yields v = (0.675,
0.675, 0.725, 0.575, 0.725, 0.725). Notice that the amount allocated to players 5 and 6
have decreased even though there was an increase in v(N). Thus, we can conclude that the
nucleolus is not aggregate monotone, and hence it is not group monotone nor strictly

monotone.
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Additive
It is shown directly that equal allocation of joint and nonseparable value are

additive. Consider the following: two games (N,v!) and (N,v2) then,

OEAIV(N,vI+v2) = (vi+vd(D) + L(vI+vDN)- Y, (vL+v2)(j))
i#je N
= V) + v2(0) + LVIQN) + v2(N) - Y, (v1G) + v2(5))
isjeN
= eiEAJV(N:VI) + eiEAJV(NsVZ)
O;EANV(N vi4v2) = (vi4vDv(N) - (vi+v2Dv(N-i) +

L+ vd)MN) - Y, @14v2@) - vi+v2(N-))
ije N
VvIIN) + v2(N + vI(N=i) + v2(N-i) +
L)+ V2N) - 3, (vIQN)+ V2(N) — v (N—i)-v2(N-))

isje N

sil + 82+ —(vl(N)+ v2(N) - Y, s}+s?)

isjeN

= QEANV(N,v1) + GEANV(N,v2)

By the following example proportionate allocation of joint value is not additive:
vi@i)=0 forall ie N, vi(12) = 1/4, vi(13) = 3/4, v1(23) = 1/4, vI(N) = 1
v2(i) = 1forall ie N, v2(ij)=1 forallizje N, v2(N)=3
v3(i)=1forall ie N, v3(12) = 5/4, v3(13)=7/4 v3(23)=5/4
v3(N) =4, where v3 = vl + v2
OPAIV(N,v1) = (3/7,1/7,3/7) OPAIV(N,v2) = (1,1,1) OPAIV(N,v3) = (11/4,9/4,11/4)
Notice that 0(vl) +0(v2) # 0(v3), therefore PAJV is not additive.

The Shapley value is additive because given three different games v1, v2, and

v3 = vlv2,
i T M{vl(S) vi(S-D) | g2 = 2 M{ 2(S) - v4(S-)) | and
scN

12



g2 = X, S 1) - vi(S-i) + (vE(S) - vASD) — g1+ 42
& e

Considering the same three games used to show that proportionate allocation of
joint value is not additive, we can show that these examples also prove that the nucleolus
and per capita nucleolus are also not additive. In the first game the nucleolus yields V(N,
vl) =(.438, .125, .438) while the per capita nucleolus yields VPC(N, v!) = (.458, .083,
.458), and both methods give the allocation V(N, v2) = VPC(N, v2) = (1, 1, 1) for the
second. However, V(N,v3) = VPC(N,v3) = (1.333, 1.333, 1.333) which is not equal to

the sum of the allocations for the first two games for either method.

13



SECTION II
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The following result establishes a relationship between these group rationality and
group monotonicity.
Theorem: (Young, 1985) There exists no allocation method that is group rational and
group monotone on games of [N| = 5.

The following results complement and generalize Young's Theorem.
Theorem: There exists no allocation method that is group rational and group monotone on
four player games.

Proof: Consider a game (N,v) where N = {1, 2, 3,4} and

v(1)=0 v(12) = 1 v(123) = 1

v(2)=0 v(13) =1 v(124) = 1

v(3)=0 v(14)=0 v(134) =1

v(4)=0 v(23)=0 v(234) =1
v(24)=1 viN) =1
v(34) =1

It is easily seen that the core(N,v) #@ and also consists of more that one point. Now
consider four different games, (N,v1), (N,v2), (N,v3), and (N,v4) which are the same as
our original game except v(123), v(234), v(124), and v(134) are increased by one,

respectively. In each new game the core has a unique point:
core(N, vl) = {(0, 1, 1, 0)}
core(N, v2) = {(0, 1, 1, 0)}
core(N, v3) = {(1,0, 0, 1)}
core(N, v4) = {(1, 0, 0, 1)}

For instance, suppose x € core(N, v1). If x4 >0 then xj + x3 + x3 <2 = v(123); s0, x4
=0. Now, if x3 <1 then x3 + x4 < v(24), and if x3 <1 then x3 + x4 < v(34); s0, X221
and x3 2 1. Therefore, we conclude that core(N, v1) = {(0, 1, 1, 0)}. A similar argument
can be given for each of the remaining games Thus any allocation method satisfying
group rationality would choose these unique points.

Notice that in game (N, v1) although v(123) has increased 0;(N, vl) = 0. This
implies that in order for our method to also satisfy group monotonicity the amount being

allocated to player 1 must be zero. Similarly, game (N, v2) implies the amount allocated

15



to player 4 in the original game (N, v) is zero, game (N, v3) implies the amount that must
be allocated to player 2 in the game (N, v) is zero, and game (N, v4) implies the amount‘
that must be allocated to player 3 in the game (N, v) is zero.

Thus, in order for our method to satisfy group rationality and group monotonicity
the allocation of our original game (N, v) must be x = (0, 0, 0, 0). However, this violates
our efficiency assumption. Therefore, no allocation method can satisfy both group

rationality and group monotonicity on our game (N, v).

Theorem: There is an infinite number of allocation methods which are group rational and
group monotone on three player games.

Before a formal proof may be given, the following definitions and theorems need to
be stated.

The preimputation set of a game (N, v) is any allocation x = (X1, X2, X3, . . . Xg)
such that efficiency is satisfied, 2 xj = V(N) .
N

Define the excess of coalition S to be

[V(S) - ¥ xi]
ie S

e(x, S) =

[wls
where w is a given vector consisting of positive values dependent on the size of the
coalition, S. Then, let e(x) be the vector of excesses ordered from largest to smallest.
The w-prenucleolus is the preimputation that lexicographically minimizes e(x) over the set
of preimputations. The w-nucleolus is the imputation that lexicographically minimizes
e(x) over the set of imputations. For example, the nucleolus (Schmiedler) has a w = (1,
1, 1) on three player games, and the per capita nucleolus (Grotte) has aw = (1, 2, 3) on

three person games.
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Let B ={S1, Sz, S3,...Sm} be acollection of subsets of N= {1, 2, 3,.. .n}.
B is N-balanced if we can find a balancing vector y = (y1, y2, . . .ym) such that, for

every player i,
2 yj=1,and ally; > 0.

j: ie S
Given an imputation x, let By be the set of all coalitions with kth maximal excess, such that
the excess of B; is greater than the excess of B;,;. Define the array determined by x,
-0, p

For each set of coalitions {S1, S ... Sm} with k™ maximal excess in Py the following
equalities hold: e(x, S;) = e(x, S;) where S;,S; € Bi.

The following is a slight generalization of Kohlberg's Theorem.
Theorem: An allocation x isthe w-prenucleolus if the the array of collections Cj, Cy,
.. .Cg+ determined by x consists of only balanced collections.

If the vector x is the w-prenucleolus, then all of the collection Cg, made up of the
sets of excesses, PB;, will be balanced. In order to determine whether or not x is the w-
prenucleolus, we only need to check the collections up to the first k* sets of excesses,
where k* is the point where x can be uniquely determined. Suppose we have a three
player game with excess vector e(x). Then we can define the following five cases for B;

and P,:

B1 B>
1. {1,2,3}
2§12, 13,23}
3. {1,23} {2,3}
4. {1,23} {12, 13}
5. { 1,23} {2, 13}

Of course, other permutations exist, but only bring about something symmetric to the
above cases. Therefore, we can say that these five cases make up all possible cases

because of the following:
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Since C; =p;, Bi must be balanced. This implies that B; contains a minimally
balanced set {1, 2, 3}, {12, 13, 23}, or {1, 23}.

(1) If By contains {1, 2,3} the x is defined as follows:
_V(N) + 2v(1) - v(2) - v(3) o v(N) + 2v(2) - v(1) - v(3)
= 3 ; g 3 ¢
o v(N) + 2v(3) - v(1) - v(2)
3
(2) If B; contains {12, 13, 23} then x is defined as follows:
- v(N) + v(12) + v(13) - 2v(23) o v(N) + v(12) + v(23) - 2v(13)
3 : - 3 ’
_ v(N) + v(13) + v(23) - 2v(12)
o 3

(3) If B; contains {1,23} then one of the following is true:
a. it also contains {2,3} OR Bzcontams {2,3} and x is defined by:
(Bl 1)V(N)+2v(1)+2v(2) v(3) - Bly(23)

w1 ‘
Wz+3 .

v(N) + (G + 1) (v(2) ve). + wiv(23)
+ 3 ’

X1 =

X2 =

v(N) + (23) +Vv(23) + 2v(3) - v(1) - 2v(2)

w1
wy t 3
b. it also contains {12, 13} OR PB; contains {12, 13} and x is defined by:
w1v(N) + wov(l) - w1v(23)
Wi + W2

X3 =

X1 =
wav(N) - v(1) + v(23) + ( wy + wa)v(12) - v(13))
2(W1 + Wz) ;

wav(N) - v(1) + v(23) + ( wy + wa)v(13) - v(12))
2(W1 + W2)

c. it also contains {2, 13} OR P, contains {2, 13} and x is defined by:

Xy =

X3 =

wiv(N) + wav(l) - w1v(23) s wiv(N) + wov(2) - w1v(13)

A= W1 + W2 W1 + Wa
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P (w2 - wilv(N) - wo(v(1) + v(2)) + wy(v(13) + v(23))
3= W1 + W2

In all of these cases x is uniquely determined. If we assume that wy = w; then for each
of the previous equations for x; do not have any negative coefficients of coalitions S,
which contain that specific player, i. Therefore, we may conclude that if coalitions
containing player i increase, then x; cannot decrease. Thus, since the w-prenucleolus
must be one of these five cases of the w-prenucleolus we can conclude that the
w-prenucleolus is monotone on three player games.

Next, we show not only that the w-prenucleolus is group rational. Consider a
game (N, v) such that core(N,v) is not empty and allocation x , which is in the core of
the game. Because x  is in the core of (N, v), by definition, we can say that e(x, S) <0
forall SN, therefore e(x) consists of all nonpositive values. However, since, V, the
w-prenucleolus lexicographically minimizes e(V), then e(V) < e(x) which implies that
e(V) consists of nonpositive values. Thus, we can conclude that the w-prenucleolus is in
the core of (N, v), and therefore is group rational.

In order to prove that the w-prenucleolus is an infinite class of allocation methods,
consider the three player game, (N, v) where all singletons have a value of zero, v(i) =0
forallie N, and v(12) = v(13) = 1, v(23) =2, and v(N) = 4. If we define w = (1, wy,

w3) where 1 <wj <2, then the w-prenucleolus of the game (N, v) is:

2 2+ Wy 2+ wp
VW(V’N) = ( 1+W2’ 1+W2’ 1+W2 ) *

These values were obtained from solving the following two consecutive linear programs:
min o

s.t.  -xp <a By adding the first and last inequalities and subtracting
-X2 £a the equality constraint his LP gives a lower bound
-X3 <a for a2 1-|:w2’ therefore, we can see by substitution
1-x1-x2 < woo of our solution that we are at optimal solution,
1-x3 -x3 < wo directly yielding our value for x;.
2 -X2-X3 < wao
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X1+X2+X3=4

min 3
s. t. -Xq = O
-X2 <PB By substituting our value for x;, it is easily seen that
-x3 <P this LP directly yields our values for x, and x3.
1-x1-xp < woP
1-x3 -x3 < wyp
2 -X2-X3 = Wl

X1 +X2+x3=4
Because our value of wy may be any value on the interval [1, 2], which would yield
different solutions for the w-prenucleolus, we conclude that the w-prenucleolus is an
infinite class of games.

This leads us to our overall conclusion, there exists an infinite class of games that
are group rational and group monotone on three player games, namely, the
w-prenucleolus.

It is straight-forward to extend these arguments to show that the w-nucleolus is also
an infinite class of methods that are group rational and monotone on three player games.
Indeed, the last two arguments (group rational and infinite class) are identical. Only the
group monotonicity must be checked by considering a number of new cases corresponding

to one or more the the x;'s being equal to v(i).

Further Study Suggestions

In this paper, we discussed the different properties that each method possesses.
We also talked about how group rationality and monotonicity relate to each other. Are their
other properties that directly or indirectly relate to one another in some way? Questions for

possible explorations are:

— Can games that are aggregate monotone be classified in any way?
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— Can games for which the nucleolus is group monotone be classified?

(Possibly by looking at the B's, sets of coalitions determined by the excesses,
which contain subsets of another coalition.)

— Can stability and group rationality somehow be related?

— Can the Shapley value be classified uniquely by somehow using strict
monotonicity ?

- Are there any methods that are group rational and reasonable?

There are many different questions that have not been answered. This paper has not even
begun to explore the possibilities, but hopefully it will give others some background and

maybe spark some new ideas.

21



APPENDIX A

22



VALUE ALLOCATION: AN AXIOMATIC APPROACH
by
David Housman and Lori Jew
Mathematical Sciences
Worcester Polytechnic Institute

APRIL 28, 1989



-92.
1. VALUE ALLOCATION PROBLEMS

A wvalue allocation problem is a pair (N, v) where N = {1, 2, ..., n} is the set of individuals
and v is a real-valued function on the subsets of N , called the value function, which satisfies v(0) =
0 and superadditivity: v(S U T) > v(S) + v(T) for all groups S and T satisfying SN T = 0.
We usually ascribe an economic interpretation to the value function: v(S) is the value the individuals
in S can jointly share if they cooperate as a group. In this case, superaddivity has the natural
interpretation that two disjoint groups can obtain at least as much working together as when then
work independently. We shall often “abuse notation” by writing v(12) and v(i) rather than v({1,

2}) and v({i}).

Example 1. A hypothetical television game show has three contestants competitively
answering Trivial Pursuit types of questions during the initial round to determine potential earnings in 5
the next round. In the second round they are given the opportunity to bargain with one another to
split the available prize money. Adam, Bob and Carrie are told that they can divide up to $900
among the three of them if they come to a mutually agreeable division. If the three cannot agree upon
a division, any pair can try to divide smaller amounts: Adam and Bob can divide $180; Adam and
Carrie can divide $360; and Bob and Carrie can divide $540. If no pair can agree upon a division, then
each contestant receives no money. This situation can be modeled by a value allocation problem with
three individuals and the value function v(1) = v(2) = v(3) = 0, v(12) = 18, v(13) = 36, v(23)
= 54, and v(123) = 90. Here individuals 1, 2 and 3 can be identified with Adam, Bob and
Carrie, respectively, and v(S) is interpreted as the amount of money (in tens of dollars) that the

contestants in S can expect to divide if they and no one else cooperate as a group. Superadditivity

holds because
V(1) + v(2) =0 <18 = v(12) v(12) + v(3) = 18 < 90 = v(123)
v(1) + v(3) = 0 £ 36 = v(138) v(13) + v(2) = 36 < 90 = v(123)
v(2) + v(3) = 0 < 54 = v(23) v(23) + v(1) = 54 < 90 = v(123)



Example 2. Delphi, Eddytown and Franconia are the three cities in a rapidly growing county.
New educational facilities will be required soon to accomodate the growing number of school-age
children. Initially, each city estimated the cost to expand their own educational facilities: $3.1, 3.4
and 4.6 million for Delphi, Eddytown and Franconia, respectively. Because of the large expense, the
three cities decided to explore joint ventures with each other. It was determined that Delphi and
Eddytown could meet their needs jointly for $5.9 million; Delphi and Franconia could meet their needs
jointly for $5.3 million; Eddytown and Franconia could meet their needs jointly for $5.6 million; and
all three could meet their needs jointly for $8.1 million. This situation can be modeled by a value
allocation problem with three individuals and the value function v(l) =v(2) =v(3) =0, v(12) =
6, v(13) = v(23) = 24, and v(123) = 30. Here individuals 1, 2 and 3 can be identified with
Delphi, Eddytown and Franconia, respectively, and v(S) is interpreted as the amount of money (in
hundred-thousands of dollars) that the cities in S can expect to save if they and no one else cooperate

as a group. For example, Delphi and Franconia save 31 + 46 — 53 = 22.

Example 3. The value function may have a political power, rather than an economic,
interpretation. A county board consists of four members. Because each board member represents a
different town and the four towns in the county have different populations, a weighted voting scheme is
used to make decisions. Specifically, the board members representing the towns of Anthrax, Babbage,
Cleo, and Dodgeson have 5, 3, 2, and 1 votes, respectively. A motion passes if and only if it receives at
least 6 votes. This situation can be modeled by a value allocation problem with four individuals and
the value function v(1) = v(2) = v(3) = v(4) = v(23) = v(24) = v(34) = 0 and v(12) = v(13) =
v(14) = v(123) = v(124) = v(134) = v(234) = v(1234) = 0. Here individuals 1, 2, 3 and 4
can be identified with the board members representing the towns of Anthrax, Babbage, Cleo, and
Dodgeson, respectively, and v(S) = 1 if the board members in S can pass a motion while v(S) =0
if the board members in S cannot pass a motion. In this situation, superaddivity implies that no pair

of disjoint groups can both win simultaneously.
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Exercise 1.1. Verify that the value functions defined in examples 2 & 3 are superadditive.

We are interested in those situations when all individuals cooperate. An allocation for the

value allocation problem (N, v) is a vector x = (x1y Xgy ..y Xn) satisfying the efficiency property:

3

x; = v(N). If x is an allocation for the value allocation problem (N, v), then we call x; the
i=1

payoff to individual i. The vectors (60, 40, -10) and (0, 0, 90) are allocations for the value

allocation problem in example 1. Of course, neither one seems to make much sense in the context of
example 1. We would like the allocation chosen for a value allocation problem to have the
interpretation that these are the payoffs that either would or should occur in the context of the
application. The allocation (60, 40, -10) is not tenable because the third individual could obtain 0
on her own but is asked to pay 10. It would be irrational for the third individual to accept this
allocation. An allocation x for (N, v) is called individually rational if the payoff to each individual

i is at least v(i). The set of all individually rational allocations is given by

IR(N,v) = {xeR": f:x,- = v(N) and x; > v(i) forall ie N }.
i=
The allocation (0, 0, 90) is individually rational, but the group {1, 2} receives a zero payoff while it
could obtain 18 by not cooperating with the third individual. It would seem irrational for the group
{1, 2} to accept this ailocation. An allocation x for (N, v) is called group rational if the sum of the

payoffs to any group S is at least v(S). The set of all group rational allocations is given by

GR(N,v) ={x€R": £ x; =v(N) and ¥ x; > v(S) forall SCN }.
ieN i€S

Consider example 1. For this value allocation problem, IR(N, v) = { (x1, Xp, X3) ¢ X; + X,
+ X3 =90 and x;, X, X320 } and GR(N, v) = { (x,, X,, X3).: X + X, + x3 =90, x; +

Xy 2 18, x; + +x3 > 36, x; + x5 > 54, and x,, Xz, X3 > 0 }. These sets are represented



geometrically in the figure on page 6.

Exercise 1.2. Find IR(N, v) and GR(N, v) for the value allocation problem in example 2.

Show these sets geometrically.

Exercise 1.3. Consider the value allocation problem with three individuals and the value
function v(1) = v(2) = v(3) =0, v(12) = v(13) = v(23) = 1, and v(123) = 2. Find IR(N, v)

and GR(N, v), and show these sets geometrically.

Exercise 1.4. Show that IR(N, v) # 0 for all value allocation problems (N, v).

According to exercise 1.4, individually rational allocations always exist. Unfortunately, some
value allocation problems have no group rational allocations. Consider example 3. If x is group
rational, then x; + x, > 1, x; + x3 > 1, X3 +x421, and x, + x3 + x4 > 1, which
implies that x; + x; + x3 + x4 > 5/2 (multiply the first three inequalities by 1/3, multilply the
last by 2/3, and add these inequalities together). But efficiency implies that X; + X3 + X3 + x4 =

1. Since 1 < 5/2, there cannot be a group rational allocation.
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2. ALLOCATION METHODS

An allocation method is a function that assigns to each value allocation problem an allocation.

This section presents several allocation methods.

2.1 Basic Methods

Equal Allocation of Joint Value first allocates to each individual what they could obtain on
their own, v(i), and then the amount remaining, v(N) — 3 v(i), is divided equally among the
i€EN
individuals.

OEAV(N, v) = v(i) + L [v(v) - @)l

For Example 1, it is easy to calculate that HEAJV(N, v) = (30, 30, 30).

Equal Allocation of Nonseparable Value first allocates to each individual their “separable
value,” which is their marginal worth to the group of all individuals, and then the amount remaining

is divided equally among the individuals.

OFANN, v) = 5 + & [V(N) = 52 0,1, where ;= v(N) — v(N=3))..

For example 1, it is easy to calculate that s = (36, 54, 72) and OEANV(N, v) = (12, 30, 48).

Proportional Allocation of Joint Value first allocates to each individual v(i), asin EAJV,

but the amount remaining is divided among the individuals in proportion to r;, the remaining

marginal value each adds to the group of all individuals.

H?AJV(N, V= V(i) 4 i'r.{v(N) e Z v(i)], if E L; # 0, and
J

el i€eN jEN




8.

=0 + 1 [v(N) = T v@)], if Ty =0,
Jj€EN
where r; = v(N) — v(N—{j}) — v(j). For example 1, it is easy to calculate that r — (36, 54, 72)

and §EANV(N, v) = (20, 30, 40).

Exercise 2.1. Find the EAJV, EANV, and PAJV allocations for examples 2 and 3.

2.2 The Shapley Value

Suppose the order in which each individual decides to coopefate is considered in making an
allocation to each individual. Specifically, each individual could be allocated her marginal worth as she
decides to cooperate. For example, in the ordering 1, 2, 3 of a three individual value allocation
problem individual 1 would be allocated v(1), individual 2 would be allocated v(12) — v(1), and
individual 3 would be allocated v(123) — v(12). Now consider doing this for all possible orderings.

For example 1, we obtain

MARGINAL VALUE = ORDER INDIVIDUALS COOPERATE SUM ?;

CONTRIBUTED BY 123 132 213 231 312 321 SUM/6
INDIVIDUAL 1 0 O 18 36 36 36 126 21
INDIVIDUAL 2 18 54 0 0O 54 54 180 30
INDIVIDUAL 3 72 36 T2 54 0 o 234 39

The Shapley value for individual i is the average of the marginal values individual i brings to the
group of all individuals over all possible individual orderings. The Shapley Value can also be written

in the following closed-form:

#;(N,v) = Z -t (n a8 ————= [v(S) — v(S—{i})] , where s denotes IS]|.
SCN

For example 1, we can calculate the Shapley value using the above formula as follows:



e

S g ik ome o as . 18 O 498 Sy
(s—1)!(n—s)!/n! 178 1/& 1/8 1/6 1/6 1/6 1/3

v(S) — v(S—{1}) 0 e g i8 .36 0 86 T
v(S) — v(S—{2}) 6 6 & 18 0 84 B4 2 20
v(S) — v(S—{3}) 6 B 9 0 B Bt 2 3 89

Exercise 2.2. Find the Shapley Value for examples 2 and 3.

9.3 The Nucleolus and Related Methods

Given a value allocation problem (N, v), let e(x, S) = v(S) —‘ESXi be the excess of group
S relative to the cost allocation x; this is a measure of how much grou;)eS is likely to complain
about the allocation x, because e(x, S) is the difference between what group S can obtain on its
own and what it would obtain according to x. Let e(x) be the vector of excesses e(x,S), S #0,
N, ordered from highest to lowest. We say that a vector y is lexicographically smaller than a vector
z if thereis a j for which y; < z; and y; = z; forall i <j, that is, in a dictionary of vectors, y
would appear before z. The nucleolus is the individually rational allocation v(N, v) that minimizes
e(x) lexicographically. In words, the nucleolus is the individually rational allocation which
lexicographically minimizes the maximum excesses: the largest complaint is as small as possible and is
voiced by as few groups as possible, the next largest complaint is as small as possible and is voiced by

as few groups as possible, etc.

For example 1, if x* = (50, 20, 20), then
S 1 2 3 e
e(x,S) -50 -20 -20 52 -3¢ 14
and
e(x!) = (14, 20, -20, -34, -50, -52).
Similarly,

< = (20, 30, 40) = e(x?) = (-16, 20, -24, -30, -32, -40)
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x® = (18,20,52) = e(x%) = (-18, -18, -20, -20, -34, -52)
x* = (18,27, 45) = e(x*) = (-18, -18, -27, -27, -27, -45).
Now e(x*) is lexicographically smaller than e(x®) which is lexicographically smaller than e(x?)

which is lexicographically smaller than e(x!).

Is x* the nucleolus for this value allocation problem? Suppose x is the nucleolus. Since x*
is an imputation, it follows that e(x) is either equal to or lexicographically smaller than e(x*). In
particular, no excess relative to x can be larger than -18. So, e(x,1) =0 — x; < -18 and e(x,
23) = 54 — x, — x3 < -18 which simplify to x; > 18 and x, + x; > 72. Since X; + Xy + X3
= 90, it follows that the two inequalities must be equalities: x; =18 and x; + x3 = 72. It also
follows that the excesses of {1} and {2, 3} relative to x must both be equal to —18. We can now
use the fact that e(x) is either equal to or lexicographically smaller than e(x*) once again to note
that no remaining excess relative to x can be larger than -27. In particular, e(x,2) =0 — Xy <
-27 and e(x, 13) = 36 — x; — x5 < -27 which simplify (using x; = 18) to x, > 27 and X3 >
45. Since x, + x3 = 72, it follows that the two inequalities must be equalities: x, = 27 and x

3

= 45. Thus, x = x* is the nucleolus.
The definition and example calculation above suggests the following iterative computational

procedure. In this procedure, a, is the k-th largest excess and €, — C,_, is the set of groups on

which the k-th largest excess is attained.

Step 1. Let X, = imp(N,v), €, = {0, N}, and k = 1.
Step 2. Minimize the maximum excess among groups whose excesses have not already been

set, that is solve
@, = min a
s.t. e(x, S) € a , S ¢ ¢,
X € Xp-

Step 3. Let X, = {x € X;_, : (x, a) is an optimal solution to the problem in step 2},



<

and C, = {SEC,_;: e(x,5) =0 forall x € X, }.

Step 4. If X, contains a single vector, then this vector is the nucleolus. Otherwise, increment

k and go to step 2.

For example 1, we begin by solving the following linear program:

min a

s.t. 0- x
0 - Xg
0 - X3
18 - x; - x,
36 - x, - X3
54 - X3 - X3

X + X+ X3

X1y X, X3

<a (1) 7

< a (2)

<ea (3

£ (12 7 aln, .8 s
< e (13)

< a (23)

= 90 (123)

> x € X,

We show one way of solving this linear program. Combine sets of inequalities such that equation (123)

may be used as a substitution. In this case, we could add (1), (2), and (3); (1) and (23); (2)

and (13); (3) and (12); or (12), (13) and (23). By doing this we want to solve for a to see

which set of inequalities is the most constraining. These sets of inequalities yield the following

constraints on « :
1) () ©) =
(1) (23) =
(2) (13) =
() (12) =
(12) (13) (23) =

IA IN AN A

IA
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Because o > -18 is the most constraining, we set o = -18 and so inequalities (1) and (23) must
hold as equalities. Using inequalities (12) and (13), we conclude that o, = -18, X, ={x: x,
=18, x,+x3 =172, x,>18, x3>36}, and ¢, = {1,23}. Since X, contains more than

one allocation, we now solve the following linear program:

min «

S.t. 0 = XZ

IN
R

(2)
(3)

o
|
X

4
IN
R

18 - x; - x, £ o (12) e(x: 8) £ w
36 - x,; - X3 £ @& (13)
X, = 18y
X3+ X3 = 72 (23)
X, > 18 x € X,
x3 2> 36
Using equation (1) to simplify, we obtain
min «a
s.t 0 - X, < «a (2)
0 - X3 L « (3)
(0] - X, < a (12)
18 - x3 £ « (13)
X3 = 18 (1)
Xy 4 %y = TR (2B



Slg.

Clearly, inequalities (12) and (13) combined with equation (23) yields the most binding
constraint: -27 < a. Weset a = -27 and note that the inequalities (12) and (13) must hold
with equality. Hence, we find that a, = -27, X, = { (18, 27, 45) }, and C, — €, = {2, 12,
13 }. Since X, contains one allocation, it is the nucleolus: v(N, v) = (18, 27, 45).

Exercise 2.3. Find the nucleolus for examples 2 and 3. Hint: For example 3, sum the excess
inequalities associated with groups 12, 13, 14, and two times the inequality associated with the
group 234.

Instead of considering the total complaint of e;ach group, one might be interested in the
average complaint per individual of each group. The per capita nucleolus is the individually rational
allocation which lexicographically minimizes the maximum per capita excesses. More formally, the per
capita nucleolus, denoted by »F<(N, v), is the individually rational allocation »(N, v) that
minimizes pce(x) lexicographically, where the.per capita excesses are defined by pce(x, S) = [v(S) —

_Esx,- 1/1S|. For example 1, we begin by solving the following linear program:
1€

min a
s.t. 0- x < a (1
0 - X L« (2)
0 - X3 L «a (3)
18 - x; - x, < 2a (12) ( e(x, S) < a
36 - x, - X3 < 2« (13)
54 - X2- X3 £ 2a (23)
X + X+ x3 = 90  (123)
X1y X9y, X3 2> O x € X,
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We find that o, = -12, X, = { (12, 30, 48) }, and Ci= {1,12,13,23 }. Since X, contains
one allocation, it is the per capita nucleolus: VPC(N, v) = (12, 30, 48).
Exercise 2.4. Find the per capita nucleolus for examples 2 and 3. See hint to exercise 2.3.

Exercise 2.5x. What happens when we do not restrict the minimizations to individually

rational allocations? The prenucleolus is the allocation that lexicographically minimizes the maximum
excess over the set of all allocations. Show that the prenucleolus and nucleolus yield the same
allocations. The per capita prenucleolus is the allocation that lexicographically minimizes the
maximum per capita excess over the set of all allocations. Show that the per capita prenucleolus a.nd‘
per capita nucleolus do not always yield the same allocations.

Exercise 2.6%. It has been suggested that instead of minimizing the maximum complaint (or
per capita complaint), we should minimize the maximum spread of complaints. The spread could be
measured by the range or standard deviation of the complaints. Explore one or more of these ideas by

explicitly defining an allocation method and applying it to examples 1-3.

2.4 The Tau Value
The tau value is based on the ideas of maﬁimum and minimum payoff entitlements. First,
note that if an allocation x is group rational with respect to the value allocation problem (N, vj ;
then the payoff to each individual is no more than her separable value: x; = v(N) — NE _x; < v(N)
jeN-{i

— v(N-{i}) = s;. So, each individual should not expect anymore than her sepa.rabjle V:l:l}.le. This
now implies that a individual i in a group S should not be forced to accept any less than v(S) —
sz.:{'} 8;. Hence, individual i should not be forced to accept any less than the maximum of these

je ]

J quantities. With this in mind, we define the maximum and minimum, respectfully, entitlements for
individual i in the value allocation problem (N, v) to be

M; = v(N) — v(N-{i}), and

m; =max {v(S) — > M;:i€eSCN}.
jes-{i}
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The tau value is the imputation that yields a straight-line compromise between the maximum and

minimum entitlement allocations:

TN, v) =2dm + (1 = A)M
where

3 M; — v(N)

A= i=1

iMi—'imi.

=1 =1

For example 1, M = (36, 54, 72) and m = (0, 0, 0). So, A = 4/9 and T = (20, 30, 40).

Exercise 2.7. Find the tau value for example 2.

In order for the words in the definition to make sense, (1) each individual’s minimum
entitlement should be no more than her maximum entitlement, and (2) the value available to the
group of all individuals should lie between the sum of the minimum entitlements and the sum of the
maximum entitlements. We call such value allocation problems quasibalanced. A value allocation
problem (N, v) is quasibalanced if m; < M, forall i € N, and f: m; < v(N) Sf:lM,-. The tau
value has been extended to value allocation probl&ns that are not th_asibalanced, butx;;lis extension is

beyond the scope of this manuscript.

Exercise 2.8. Show that example 3 is not a quasibalanced value allocation problem.

Exercise 2.9+. A different reasonable way to define the maximum entitlement would be as the

maximum marginal value the individual adds to a group, that is, M; = max { v(S) — v(S—{i}): i
€S C N}. Similarly, the minimum entitlement could be defined as the minimum marginal value

the individual adds to a group. Explore one or more of these ideas by explicitly defining an allocation

method and applying it to examples 1-3.
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3. PROPERTIES OF ALLOCATION METHODS
We would like the allocations chosen for a value allocation problem to have the interpretation
that these are the payoffs that either would or should occur in the context of the application. The
postive question, “What allocation would occur?” involves notions of bargaining and rationality. The
normative question, “What allocation should occur?” involves notions of fairness and arbitration. In
this section we define and examine a number of properties for allocation methods that capture some
aspects of these notions of bargaining and fairness. We emphasize here that an allocation method will

be said to possess a property if and only if the given condition holds on all value allocation problems.

3.1 Basic Properties

In this section, we describe a number of properties which any allocation method should possess.
All of the methods described in section 2 possess these properties, except that PAJV is not continuous.
At the other extreme, the following pathologic allocation method can be shown to possess none of the
basic properties: 6;(N, v) = v(N)Z; 6,(N, v) = v(N) if v(2) > v(1); and ;(N,v) =0 if i #£1
or 2.

An allocation method satisfies the g&alf'reatment property if two individuals receive the same
payoff whenever they have the same effect on the value function: if v(S U {i}) = v(S U {j}) for all
SC N —{i,j}, then 4;(N,v) = 0;(N, v).

An individual’s payoff should not depend on her assigned number. An allocation method is
symmetric if for all permutations 7 of N and for all individuals i € N, it follows that 0,(,-)(N,
7v) = 04(N, v) where 7v is the value function defined by av(xS) = v(S) forall S C N.

Exercise 3.1. Show that if an allocation method is symmetric, then it satisfies the equal
treatment property. Exhibit an allocation method that is not symmetric but satisfies the equal

treatment property.

It would seem like common sense for an allocation method not to depend on the units of value
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being used. A method is proportionate if for any « # 0, it follows that 6(N, av) = a4(N, v)
where av is the value function defined by (av)(S) = av(S) forall S CN.

Suppose u is a value function and i is a individual satisfying u(S) = v(S) + b for all
groups S containing i, and u(S) = v(S) for all groups S not containing i. The additional worth
of groups with respect to u is due exclusively to individual i, and so she should receive that
additional value, that is, 8,(N, u) = 6;(N,v) + b and 9;(N, v) = BQ(N, v) for j #i. A method

that satisfies this property is said to be value separable.

It is sometimes convenient to refer to an allocation method that is both proportionate and
value separable. Such a method is called covariant. An allocation method is covariant if for any a #
0 and b € R", it follows that §(N, u) = af(N, v) + b where u is defined by u(S) = av(S) +
> b; forall SCN.
ieS

Exercise 3.2. Show that an allocation method is covariant if and only if it is proportionate and

value separable.

A small change in the value allocation problem should cause only a small change in the chosen
allocation. An allocation method is continuous if whenever v* and v are group functions satisfying
vE(S) — v(S) forall S C N, then 4,(N, v¥) — 8;(N,v) forall i € N. The method>PAJV is not
continuous. Indeed, let u*(1) = u*(2) = u*(3) = 0, u*(12) = u*(13) = u*(23) =1 - 1/k, and
u*(123) = 1, and let v¥(1) = v*(2) = v¥(3) = 0, vE(12) = vF(13) = 1 - 2/k, v¥(23) =1 -
1/k, and v¥(123) = 1. Then O(N,u*) = (1/3,1/3, 1/3) and (N, v*) = (2/5, 2/5, 1/5)

although both sequences of allocation problems converge to the same allocation problem.

Exercise 3.3. Suppose 0 satisfies the equal treatment property and is value separable. Show

that if N = {1,2}, then 6,(N,v) = v(i) + J[v(12) — (1) — v(2)] for i =1, 2.

3.2 Rationality and Reasonableness

An allocation method is individually rational if no individual could ever do better on his own,
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that is, 6,(N, v) > v(i) forall i € N. If some individual could do better on his own, he might not
be willing to cooperate with the rest of the individuals.

The Shapley value is individually rational on superadditive value allocation problems. Indeed,
consider the marginal contribution of individual 1 given different orders for the individuals. When
individual 1 enters first, his marginal contribution is v(1). When individual 1 enters after a single
other individual i, his marginal contribution is v(i1) — v(i) > v(1) by superadditivity. In general,
v(S U {1}) — v(S) > v(1) by superadditivity. Since the Shapley Value is a weighted average of these
marginal contributions, individual rationality follows. On the other hand, the per capita prenucleolus
is not individually rational on all superadditive value allocation problems because this method yields
the allocation (-1, 7,7, 7) for the 3-person value allocation problem v(1) = v(2) = v(3) = v(4) =
v(12) = v(13) = v(14) = 0, v(23) = v(24) = v(34) = v(123) = v(124) = v(134) = 16, and
v(234) = v(1234) = 20.

Rationality can be extended to groups instead of individual individuals. After all, if a group is
better off on its own, then there would be no reason to cooperate with the rest of the individuals. This

implies that an allocation should be in the core of the value allocation problem if the core is nonempty.

Therefore, an allocation method is group rational if (N, v) € core(N, v) whenever core(N, v) # 0.

The Shapley value is not group ra.tiona.l.. indeed, consider the 3-person value allocation
problem v(1) =1, v(2) = v(3) =0, v(12) = 3, v(13) = v(23) = 4, and v(N) = 6. The
Shapley value for this value allocation problem is (13/6, 11/6, 12/6). The core for this value
allocation problem is nonempty because the allocation (2, 2, 2) € core(N,v); however, é(N,v) ¢
core(N,v) since 23/6 = ¢,(N,v) + ¢5(N,v) < v(23) = 4. On the other hand, the nucleolus is group
rational because if the core is nonempty, there exists an allocation with a nonpositive excess vector.
Since the nucleolus is the imputation that minimizes the maximum excess, its excess vector will also
have nonpositive components, and so the nucleolus is in the core.

We have seen that group rational allocations do not always exist. If the value allocation

problem at hand has an empty core, then for any proposed allocation, there is a group which can do



-19-

better on its own. So, there are always individuals with credible objections to any proposed allocation.
An allocation x is called stable if for any objection there is a counterobjection. Formally, an objection
of individual i against individual j with respect to the allocation x is an allocation y and a group
S satisfying

(1) ieS and j ¢8S,

(2) ye 2 x; forall k€S and y; > x;, and

() X ¥, <v(S) and ¥ y, < v(N-9).
kES kEN-S

A counterobjection of individual j against individual i with respect to the allocation x and
objection (y, S) is an allocation z and a group T satisfying

(1) jJET and i ¢ T,

(2) 2z, 2x; forall k€T and 2z, >y, forall k€ SN T, and

(3) 3 2 < v(T) and 3 3z, < v(N-T).
KET KEN-T

It is rational for individuals and groups to obtain as much when cooperating as they could
obtain on their own. It is reasonable for individuals and groups to not receive more than their
maximum marginal contribution. Giveﬁ a valuévallocation problem (N, v), aindividuali € N, and
groups T C S C N, individual i makes a marginal contribution to group S of v(S)— v(S—-{i}),
and group T makes a marginal contribution to group S of v(S) — v(S-T). In both cases we are
interested in what the value of the group S is without a particular‘ individual or group of individuals
or what that particular individual or group of individuals has contributed to the value of S. A
method is individually reasonable if no individual receives more than her maximum marginal
contribution to any gr;up S C N, thatis, 6;(N,v) < max{v(S) —v(S—{i})): ieSCN } for all
i € N. A method is group reasonable if no group receives more that their maximum ma.rginal
contribution, that is, Zr 0;(N, v) <max {v(S) — v(S—T): T€SCN} foral TCN

ie

whenever such an allocation exists.
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The Shapley value is individually reasonable because it considers all possible marginal
contributions for each specific individual and then takes the average of these values. Therefore, there is
no way that the Shaple-y value could ever be larger than the maximum marginal contribution for that

individual.

3.3 Consistency Properties

If a individual’s marginal contribution to any group is only what they could make on their
own, then in all fairness that individual should receive only this amount. This individual is often
referred to as a “dummy” individual. In other words, if i € N satisfies v(S U {i}) = v(S) + v(i)
for all groups S that do not contain i, then (N, v) = v(i) . Allocation methods which possess
this property are said to be individually subsidy free.

An extension to individually subsidy free is the property of group subsidy free. If a given
group is such that each subgroup’s marginal contribution to any group of individuals not in the given
group is what the subgroup can make on its own, then the given group should receive its value. In
other words, if T C N satisfies v(S) = v(SN T) + v(S — T) for all groups S C N, then
2 0:;(N, v) = v(T).
ieT

When T C N satisfies v(S) = v(S N T) + v(S — T) for all groups S C N, it is asif the
individuals in T and the individualsin N — T are playing two completely independent value
allocation problems. Of course, there should be no cross subsidies in the combined value allocation
problem (as required by the group subsidy free property), but it also seems reasonable that the
allocation should not depend upon whether the combined or two separate value allocation problems are
being played. An allocation method is individually separable if whenever T C N satisfies v(S) =
v(S N T) + v(S — T) forall groups S C N, it follows that 0;(N, v) = 6,(T, vy) forall i €T,
where v is defined by v(S) = v(S) forall S C T.

As motivated above, the property of individual separability says that what happens in a value
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allocation problem should be replicated when the value allocation problem is restricted to a subset of
its individuals. The last two properties that we consider in this section are stronger versions of this
idea. An allocation method is Sobolev consistent if 6;(N, VT, 6N, v)) = 0N, v) forall i € T and
T € N, where (T, VT x) is the reduced value allocation problem defined by

VT' X(T) = E x,- 9 and

ieT
v S) = max v(SUR) — x;} for SCT.
T =max 1 {VEUR) = £x) for

An allocation method is Hart & Mas-Colell consistent, if 9,-(N, VT, 6(N v)) =0;N,v) forall ieT

and T C N, where (T, Er x) is the reduced value allocation problem defined by

v x(8) = v(SU(N-T)) = g:—_rx‘ for SCT.

i€

Exercise 3.4. Show that if an allocation method is individually separable, then it is group

subsidy free. Show that if an allocation method is group subsidy free, then it is individually subsidy

free.

3.4 Monotonicity and Additivity Properties

Monotonicity considers changes rﬁade to value allocation problems and places reasonable
restrictions on the allocations as a result of these changes.

Suppose we have a value allocation problem (N,v) and increase the value of the group of all
players, v(N). An allocation method is aggregate monotone if there is no decrease in the allocation to
any individual i € N, which seems natural. If we call the original value allocation problem (N,v') and
the changed value allocation problem (N, v?) this property says that if v(N) < v¥}(N) and Vi) =
v3(S) for S # N, then (N, v!) < 0,(N, v?) forall i € N. The Shapley value is aggregate

monotone because v!(N) — v!(N-{i}) < v¥(N) — v3(N-{i}) foralli € N, therefore #(N,v}) <
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$(N,v?).

Group monotonotonicity is very similar to aggregate monotonicity, but instead of examining
increases in just the group of all individuals, it considers changes to any group and restricts the new
allocation for any individual in these groups. Specifically, for every fixed T C N, if vl(T) < v"’(T)
and v!(S) = v¥S) for S # T, then 9;(N, v') < 6;(N, v?) forall i € T. Equivalently, for every
fixed i € N, if v!(S) < v¥(S) forall S containing i, and v(S) = v*(S) forall S not
containing i, then 6,(N, v') < 8;(N, v?).

Strict Monotonicity is the same as group monotonicity except we have strict inequalities. In

other words, for every fixed T C N, if v}(T) < v¥(T) and v}(S) = v*(S) for S # T, then
8;(N, v!) < 8;(N, v?) forall i € T.

The notion of strong monotonicity concentrates on marginal contributions instead of increases
in value. For this property if for some individual i € N and value allocation problems (N, v!) and
(N, v?), individual i’ marginal contribution to each group S in value allocation problem v! is less
than or equal to its marginal contribution to each group in value allocation problem v? then
individual i should be allocatied_a.t least as much in v? asin v!. So, for every fixed i € N, if
vi(S) — vi(S—{i}) < v¥(S) — v3(S—{i}) forall S containing i, then 6;(N, v!) < 6,(N, v?).

Oftentimes, accountants like to breakdowﬁ overall costs into their component parts. For
example, the cost of a municipal project might consist of capital and maintenance costs. Surely, the
allocation method should give identical results whether one considers the separate costs independently
and then adds the imputed allocations or considers the costs jointly to arrive at an allocation.
Consider two value allocation problems (N, v!) and (N, v?) and a third value allocation problem

(N, v®) = (N, v} + v?). A method is said to be additive if the allocations made for v! and v? sum

or add up to the allocation in v3. In other words, O(N, v} + v?) = 4(N, v}) + O(N, v?) where (N,

vl + v2)(S) = v(S) + v¥(S) forall S CN.

Exercise 3.5. Show that if an allocation method is strong monotone or strict monotone, then it
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is group monotone. Show that if an allocation method is group monotone, then it is aggregate

monotone.



-9 .-

4. SOME IMPORTANT THEOREMS

Theorem 1 (Shapley, 1953). The Shapley value is the unique value allocation method that is
symmetric, individually subsidy free and additive.

Theorem 2 (Young, 1985). The Shapley value is the unique allocation method that is
symmetric and strongly monotonic.

Theorem 3 (Young, 1985 and Jew and Housman, 1989). There exists no allocation method
that is both group rational and group monotone.

Theorem 4 (Sobolev, 1975). The nucleolus is the unique allocation method that is symmetric,
covariant and Sobolev consistent.

Theorem 5 (Hart & Mas-colell, 1987). The Shapley value is the unique allocation method that
is symmetric, covariant and Hart & Mas-colell consistent.

Exercise 4.1x. For each allocation method M and property P considered, show whether M

satisfies P on the class of superadditive value allocation problems. You may use theorems 1 - 5 given

above in your proofs.
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APPENDIX: RELATIONSHIP TO GAME THEORY

Term Used in This Paper Term Used in the Game Theoryv Literature
value allocation problem superadditive cooperative game,

superadditive game in coalitional function form

individual player

group coalition

allocation preimputation, payoff vector

individually rational allocations imputations

group rational allocations core payoff vectors

covariant relative invariance under strategic equivalence

individually subsidy free dummy property, dummy axiom
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