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Abstract

An example of a fair division problem involving three players with the same preference order on six indivisible objects is examined to find allocations that satisfy the properties of envy-freeness and efficiency. Two allocations are shown to be envy-free and efficient, and one is shown to be efficient but not envy-free. The method of strict alternation does not yield an envy-free allocation in the example, but balanced alternation yields an efficient and envy-free allocation for exactly one order of the players. This method can then be extended to any number of players, and under certain conditions, will yield an envy-free and efficient allocation for all orders of the players.
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Introduction


 An allocation is a distribution of the objects, to the players. The objects a player receives is called his bundle. An allocation problem is a finite number of players denoted by {1, 2,…, I}, a finite set of objects denoted by {1,2,..., J}, and numbers 
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describing player i’s valuation of object j. An allocation is envy-free if every player thinks he or she receives a bundle that is at least tied for the largest, or tied for the most valuable and, hence, does not envy any other player. An allocation is efficient if there is no other allocation that is strictly better for at least one player and as good for all the others.  If there is an allocation that is strictly better for at least one player and as good for all others, we would say that that allocation dominates. Let 
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 denote the number of objects in the set
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 . We will also use 
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to denote the preference order players have on the objects. 

We take three players, Oscar, Snoop, and Martha, and six objects: a house, car, speaker system, dog, cookbook, fondue pot.  Let us assume that each player prefers the house to the car to the speakers to the dog to the cookbook to the fondue pot.  Let us also assume that each player values each object as follows:

Table 1
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	1.House
	2.Car
	3.Speakers
	4.Dog
	5.Cookbook
	6.Fondue 

	1.Oscar
	10
	5
	4
	3
	2
	1

	2.Snoop
	6
	5
	4
	3
	2
	1

	3.Martha
	5
	3
	3
	3
	2
	1



Table 1 represents what each player values each object by assessing point values. For example, Oscar values the house at 10 points and Martha values the dog at 3 points. In order to save space, we will use corresponding numbers instead of object names in what follows.


Theorem 1:  The allocation that gives {1,3} to Oscar, {2,4} to Snoop, and  {5,6} to Martha  is an efficient allocation, but it is not an envy-free allocation.

Proof: The following table records the worth of a particular subset of objects for each player. For example, Snoop values {1,3} at 6+4=10. 
Table 2
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	{1,3}
	{2,4}
	{5,6}

	Oscar
	14
	8
	3

	Snoop
	10
	8
	3

	Martha
	8
	6
	3


 This allocation is not envy-free, because both Snoop and Martha prefer bundle {1,3} to the bundles they received, and therefore envy Oscar. We will now prove that the allocation ( {1, 3}, {2, 4}, {5, 6} ) is efficient by assuming that it is not efficient, and deriving a contradiction. Suppose that there is another allocation (
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) that dominates ( {1, 3}, {2, 4}, {5, 6} ). 
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 must give Oscar at least 14 points, 
[image: image9.wmf]A

S

 must give Snoop at least 8 points, and 
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 must give Martha at least 3 points for (
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) to dominate. For Oscar to receive at least 14 points , 
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. For Snoop to receive at least 8 points,
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, and for Martha to receive at least 3 points, 
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. Since there are only 6 objects, 
[image: image15.wmf]2

£

A

M

. Also because there are 6 objects,
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. Indeed, Giving Snoop 4 objects would mean that Oscar would either be left with one object when he needs at least two, or Martha would be left with nothing when she needs at least 1. Giving Oscar 4 objects would mean that Oscar would either be left with one object when he needs at least 2, or Martha would be left with nothing.

Since Oscar must obtain at least 14 points with 
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, it follows that:
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= {1,2}, {1,3}, {1,2,3}, {1,2,4}, {1,2,5}, {1,2,6}, {1,3,4}, {1,3,5}, {1,3,6}, {1,4,5}, or {1,4,6}

Note that Oscar must have object 1. Now for Snoop to obtain at least 8 points with 
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 which does not include 1 and 
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=  {2,3}, {2,4}, {2,3,4}, {2,3,5}, {2,3,6}, {2,4,5}, {2,4,6}, {3,4,5}, or {3,4,6}

Since Martha must obtain 3 points with 
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 which does not include 1 and
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=  {2}, {3}, {4}, {2,3}, {2,4}, {2,5}, {2,6}, {3,4}, {3,5}, {3,6}, {4,5}, {4,6}, or {5,6}. 

If Oscar gets 3 objects, then Martha can only have one object, and 2, 3, or 4 are her only options as shown. Snoop also can only have 2 objects, so {2, 3} or {2, 4} are his options. Snoop cannot obtain at least 8 points without the car, that is,
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. This leaves Martha with either taking objects 3 or 4. However in any possible bundle of 3 objects for Oscar that does not include 2, he will need either object 3 or object 4 in addition to object 1. So 
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. Snoop also must have either object 3 or object 4. This would leave Martha with choosing either object 5 or 6, which are not possibilities. Thus Oscar cannot have 3 objects. 


If Snoop gets 3 objects, Martha can only have one object, and Oscar can only have 2 objects, and  {1,2} or {1,3} are his choices. This would mean that 
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. Again, this would leave Martha choosing either object 5 or 6, which are not possibilities. Thus, Snoop cannot have 3 objects.


Since Oscar cannot have 3 objects and Snoop cannot have 3 objects, 
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. The bundle {2,3} for 
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overlaps with all bundles 
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= {2,4}, which means that
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={1,3}, and by process of elimination, 
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= {5,6}.To say that the allocation ({1,3}, {2,4}, {5,6}) dominates itself is a contradiction, so the original allocation must be efficient.

Theorem 2: The allocation that gives  {1,6} to Oscar,  {2,5} to Snoop, and {3,4} to Martha is both envy-free and efficient. 

Proof: As before the following table records the worth’s of each bundle of objects for each player. 
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	{1,6}
	{2,5}
	{3,4}

	Oscar
	11
	7
	7

	Snoop
	7
	7
	7

	Martha
	6
	5
	6


Table 3

The allocation is envy-free, as can be seen from table 3: Oscar values his bundle {1,6} at 11 which is at least as large as what he values Snoops bundle {2,5} and Martha’s bundle {3,4}. In this case, Oscar is getting the bundle that is worth the most to him. Snoop is getting a bundle {2,5} that is valued at least as much as the other two bundles, and Martha is getting a bundle that is valued, from her perspective, at least as much as the second highest bundle {1,6}, which is valued the same. Therefore no player envies another player. 

To prove that the allocation is efficient, we will say that ({1,6}, {2,5}, {3,4}) is not efficient, and derive a contradiction like before. Suppose there is another allocation (
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) that dominates ({1,6}, {2,5}, {3,4}).
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must give Oscar at least 11 points, 
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 must give Snoop at least 7 points, and 
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 must give Martha at least 6 points for (
[image: image46.wmf]A

A

A

M

S

O

,

,

) to dominate. Oscar cannot achieve 11 points without at least 2 objects. Snoop cannot get 7 points without at least 2-objects, and Martha cannot get 6 points without having at least two objects. Therefore we can conclude that all players must get 2 objects, so 
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. Because Oscar can only have a maximum of 2 objects, he cannot obtain at least 11 points without object 1, so 
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. Here are all of the possible 2 object bundles for Oscar to get at least 11 points (
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), Snoop to get at least 7 points (
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), Martha to get at least 6 points (
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), and Oscar receive 1: 
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= {1,2}, {1,3}, {1,4}, {1,5}, or {1,6}
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= {2,3}, {2,4}, {2,5}, or {3,4}
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= {2,3}, {2,4}, or {3,4}


If you look at the possibilities for Snoop and Martha, you can see that the only bundle for Snoop that will not overlap with Martha, is {2,5}, and Martha is only left with {3,4}, which means that Oscar can only take {1,6}. Again to say that this allocation dominates itself is contradictory; therefore the original allocation is efficient.   

Theorem 3:  The allocation that gives {1} to Oscar,  {2,3} to Snoop, and  {4,5,6} to Martha will provide an allocation that  is envy-free and efficient.

Proof: Table 4 records the worth’s of each bundle of objects for each player. The numbers underlined and in bold show what bundle each player receives. Again, this is envy-free because each player is receiving something that they believe is valued at least as much as the other bundles. 

Table 4
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	{1}
	{2,3}
	{4,5,6}

	Oscar
	10
	9
	6

	Snoop
	6
	9
	6

	Martha
	5
	6
	6


Suppose
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 is a solution that dominates ({1}, {2,3}, {4,5,6}).
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 must give Oscar at least 10 points, 
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 must give Snoop at least 9 points, and 
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 must give Martha at least 6 points for (
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) to dominate. Oscar can get at least 10 points, if he has the house. But Snoop cannot get at least 9 points without at least 2 objects, and Martha cannot get 6 points unless she has at least 2 objects. So 
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.  If we refer back to the proof of theorem 1, since 2 players need at least 2 objects, and one player needs at least one object, there can be no single player that receives 4 objects. 

Since Oscar must obtain at least 10 points with
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= {1}, {1,2}, {1,3}, {1,4}, {1,5}, or {1,6}

Notice that Oscar must have object 1. Now for Snoop to receive at least 9 points with 
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= {2,3}, {2,3,4}, {2,3,5}, {2,3,6}, {2,4,5}, {2,4,6},  or {3,4,5}

Since Martha must obtain at least 6 points with 
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= {2,3}, {2,4}, {3,4}, {2,3,4}, {2,3,5}, {2,3,6}, {2,4,5}, {2,4,6}, {2,5,6}, {3,4,5}, {3,4,6}, {3,5,6}, or {4,5,6}

 If Snoop gets 3 objects, Martha must get 2 objects, and Oscar is left with object 1. Giving Snoop {3,4,5} will overlap with Martha for any bundles that she could possibly have. All other bundles for Snoop would have
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. If Snoop has 3 objects, all possibilities where Martha has 2 objects will overlap with Snoop. If all players receive 2 objects, Snoop can only have bundle {2,3}, which will overlaps with any 2-object bundle that Martha receives.  So 
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. This leaves Oscar with just object 1, Snoop only has the option of taking {2,3}, so Martha is left with {4,5,6} by default. The only other possibility is the original allocation, which cannot dominate itself, so this allocation is efficient. 

Methods of Choosing

Strict Alternation

There are many different methods of choosing besides merely dividing up the objects a certain way. One of these methods is strict alternation, which is the process of taking turns choosing in some arbitrary order that is repeated until all of the objects have been chosen. For Example, players A, B, C, and D, could choose in this order: 

D, C, B, A, D, C, B, A,…, 

or they could choose in this order: 

B, A, D, C, B, A, D, C,…. 

Theorem 4: For any order of the players, strict alternation will yield an allocation that is not envy-free.

Proof: If we were to apply this method to the previous example, the order could go something like this: Oscar, Snoop, Martha, Oscar, Snoop, Martha. Table 5 represents what each player will choose based on the choice order.  Numbers underlined are objects chosen that correspond with their preference on the items.

Table 5
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	1.House
	2.Car
	3.Speakers
	4.Dog
	5.Cookbook
	6.Fondue 

	1.Oscar
	10
	5
	4
	3
	2
	1

	2.Snoop
	6
	5
	4
	3
	2
	1

	3.Martha
	5
	3
	3
	3
	2
	1


The objects would then be allocated this way:
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	{1,4}
	{2,5}
	{3,6}

	Oscar
	13
	7
	5

	Snoop
	9
	7
	5

	Martha
	8
	5
	4


Table 6

Table 6 tells us that both Martha and Snoop are envious of Oscar because he has the best bundle. The table also shows us that in any order that the players choose in, it will not be envy-free, because whoever chooses first will get bundle {1,4}, which is valued the highest by all of the players. 

Balanced Alternation


Another method that we can use is a method called balanced alternation, which is similar to strict alternation where you choose in some order of the players, but once everyone has made their first choice, you repeat the process in the reverse order the second time around. The next rounds you would reverse the whole order. For Example, players A, B, C, and D, might choose in this order: 

A, B, C, D, 

If there were more objects, the next round of choosing would go like this:

  D, C, B, A,  

If we put it all together it would look like this:

A, B, C, D,    D, C, B, A 

If there were even more objects, the whole order would be reversed in the next rounds and it would look like this:

A, B, C, D,    D, C, B, A,   D, C, B, A,   A, B, C, D

If there are even more objects, the next rounds would be the same as the previous order, but in reverse: 

A, B, C, D,  D, C, B, A,      D, C, B, A,   A, B, C, D,      D, C, B, A,   A, B, C, D      A, B, C, D,  D, C, B, A,

If there were even more objects, you would continue by reversing the whole order again.

Theorem 5: Balanced alternation will yield an envy-free and efficient allocation for exactly one order of the players.

Proof: Balanced alternation will give us the allocation ({1,6}, {2,5}, {3,4}), which is the same allocation shown in table 3. Theorem 2 shows that the allocation is envy-free and efficient if we give {1,6} to Oscar, {2,5} to Snoop, and {3,4} to Martha. This means that Oscar must choose first, Snoop must choose second, and Martha third. Martha would then choose fourth, Snoop would be fifth, and Oscar last. However, since Oscar clearly values {1,6} more than the other two bundles, he would have to get {1,6} for Oscar to not envy anyone else.  Also Martha will not settle for {2,5}, because she values it the least out of all of the possible bundles she could choose. This shows that balanced alternation for this example, is efficient, and envy-free for one order that the players choose in.

Theorem 6: Suppose that the players have the same linear preference order
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on the objects.  Balanced alternation  yields an efficient and envy-free allocation for all orders of the players if and only if  the condition 
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holds for all j=1,2,…,I-1 and i=1,2,…I.  

Proof:  Because all players prefer the objects in the same linear preference order 
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, balanced alternation yields an allocation in which the first player receives {1,J},  the second player receives {2,J-1}, the third receives {3,J-2}…. This pattern would continue until the last player, I, would receive {I,I+1}. If the players choose in the order 1, 2,…, I, we would get an allocation like this: ({1,J} {2,J-1} {3,J-2}…{I,I+1}). 

 For this to be envy-free for any order of the players, all players have to be indifferent between all bundles in the allocation. The condition
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 can be rewritten as 
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.  If for example j=1, then the equation would be like this: 
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. This states that the value of {1,J} is equal to the value of {2,J-1}. If for example j=2, then the equation would state that 
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, in other words, the value of {2,J-1} is equal to the value of {3,J-2}. So the condition is equivalent to saying that all players are indifferent among all bundles. 

To prove efficiency, I will assume that there is another allocation that dominates, and derive a contradiction.  Suppose there is another allocation (
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{1,J}.  For example, bundle {2,J}is worth less than bundle {1,J} object 2 is worth less than object 1.  If object 2 is worth the same as object 1, then there will be an equal tradeoff, but the bundle would not be any better than before. Thus {1,J} must be a possible bundle for all players.

 If 
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, then the only thing that dominates {2,J-1} is {1,J-1} or {2,J-1}. However since 
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If
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, the only allocation left is {3,J-2}. So 
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= {1,J}, {2,J-1}, or {3,J-2}.  If we repeat this pattern with objects J-3, J-4,…,I+1, we will end up with the allocation ({1,J}, {2,J-1},{3,J-2},…,{I,I+1}), as the only other efficient allocation, which is the same one as before. By contradiction, the original allocation is an efficient allocation. Since each player is indifferent between all of the bundles in the allocation, there will be no envy among the players. Thus balanced alternation does yield an efficient and envy-free allocation for all orders that the players choose.

Conclusion


The condition that satisfies the properties of envy-freeness and efficiency through the method of balanced alternation is a very strong condition, but it does ensure that for all orders of the players, there will be an envy-free and efficient allocation. The condition holds that all players must be indifferent between all bundles of the allocation, but realistically, there are not very many fair division problems where there will necessarily be envy-freeness all around. Other steps can be taken in this process of locating envy-free and efficient allocations with other methods besides balanced alternation that may or may not find allocations that satisfy the two properties.
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