A Characterization of the Extreme Monotonic Extensions of a Partially Defined Game

Roger Lee

September 29, 1992

Drew University REU

Prof. David Housman

When only limited information exists about the worths of certain subsets of individuals in a game, standard methods cannot compute payoffs. One solution is to allocate as dictated by some specific extension of the game. The extreme points of monotonic extensions are characterized.

1 Background

A cooperative game is a pair (N, w) where $N = \{1, 2, \dots, n\}$ is a set of players and $w: 2^N \to \mathbb{R}$ with $w(\emptyset) = 0$ gives the worth obtainable by the cooperation of each subset of players. A value associates with each (N, w) a vector in \mathbb{R}^n representing the payoff to each player. A game is monotonic if $w(S) \leq w(T)$ whenever $S \subseteq T$.

Letscher (1990) defines a partially defined cooperative game (PDG) to be a triple (N,Ω,v) where $\Omega \subseteq 2^N$ are the coalitions whose worths are known and $v:\Omega \to \mathbb{R}$ gives these worths. We require $\emptyset, N \in \Omega$. An extension of this PDG is a game (N,w) with v(S) = w(S) for all $S \in \Omega$. We define a partial extension of this PDG to be a PDG $(N,\overline{\Omega},\overline{v})$ where $\Omega \subseteq \overline{\Omega}$ and $v(S) = \overline{v}(S)$ for all $S \in \Omega$. Define this PDG to be monotonic if $v(S) \leq v(T)$ for all $S, T \in \Omega$ with $S \subseteq T$.

The object of Ventrudo and Wallman (1991) is to determine value on all PDGs $P = (N, \Omega, v)$. One approach is to find the set $\mathfrak{M}(P)$ of all monotonic extensions of the game, select some "central" point in this set, and apply some value to this game. A geometric characterization of $\mathfrak{M}(P)$ facilitates the selection of such a point.

View a game (N,w) as a vector in \mathbb{R}^{2^n} . It is easy to verify that $\mathfrak{M}(P)$ is a bounded convex set. An extreme point of a convex set C is an $x \in C$ such that if $c_1 + c_2 = 2x$ for some $c_1, c_2 \in C$, then $c_1 = c_2 = x$. We characterize $\operatorname{ex}(\mathfrak{M}(P))$, the extreme points of $\mathfrak{M}(P)$.

2 A Condition Sufficient for Extremity

Index each factor in the product $\{0,1\}^b$, where $b=2^n-|\Omega|$, by a different element of $2^N\backslash\Omega$. For any $\alpha\in\{0,1\}^b$, any monotonic PDG $P=(N,\Omega,v)$, define the game (N,v^α) as follows. Arrange the elements of $2^N\backslash\Omega$ in order of nondecreasing cardinality: S_0,S_1,\cdots,S_b . Define $v^\alpha(S)=v(S)$ for all $S\in\Omega$. Assume that $v^\alpha(S_i)$ has been defined for all i< l. Define

$$v^{\alpha}\!\!\left(S_{l}\right) = \begin{cases} \max\!\!\left\{v^{\alpha}\!\!\left(S\right) \mid S \subseteq S_{l} \text{ and } \left(S \in \Omega \text{ or } S = S_{i} \text{ for some } i < l\right)\right\} & \text{if } \alpha\!\!\left(S_{l}\right) = 0 \\ \min\!\!\left\{v^{\alpha}\!\!\left(S\right) \mid S \supseteq S_{l}, \; S \in \Omega\right\} & \text{if } \alpha\!\!\left(S_{l}\right) = 1 \end{cases}$$

Theorem: If $(N, v^{\alpha}) = (N, w)$ for some $\alpha \in \{0, 1\}^b$, then $(N, w) \in ex(\mathfrak{M}(P))$.

Proof: Ventrudo and Wallman (1991).

We claim the converse fails. Define P by $N = \{12345\}$, $\Omega = \{S \subseteq N \mid |S| = 0, 1, 4, \text{ or } 5\}$,

$$v(12345) = 2, v(i) = 0,$$

$$v(2345) = 1$$
, otherwise $v(ijkl) = 2$.

Define the extension (N, w) by w(123) = w(234) = w(235) = w(23) = w(12) = 1;

$$w(124) = w(125) = 2$$
; for other $|S| = 2$ or 3, $w(S) = 0$.

which is monotonic. To show w extreme, suppose $\exists \Delta \in \mathbb{R}^{2^n}$ such that $w \pm \Delta$ are monotonic. Then

$$\begin{split} w(23) &= w(234) = w(235) = v(2345) \Rightarrow \Delta(23) = \Delta(231) = \Delta(235) = 0 \\ \\ w(123) &= w(23) \Rightarrow \Delta(123) = 0 \\ \\ w(12) &= w(123) \Rightarrow \Delta(12) = 0 \end{split}$$

Clearly for all other $S \subseteq N$, $\Delta(S) = 0$, making Δ the zero vector. So w is extreme.

However there is no α such that $v^{\alpha} = w$, because $v^{\alpha}(12)$ can only be 0 or 2, never 1.

3 A Necessary and Sufficient Condition

Base step: $\mathfrak{P}_0 = \{P_0\}.$

Inductive steps:

(X1) If $P \in \mathfrak{P}_{i-1}$ then $\widehat{P} \in \mathfrak{P}_i$ where

$$\begin{split} \Omega_{\widehat{P}} &= \Omega_P \cup \bigcup_{v(S) \,= \, a_i} 2^S \\ v_{\widehat{P}}(T) &= a_i \qquad \qquad \text{for all } T \in \bigcup_{v(S) \,= \, a_i} 2^S \backslash \Omega_P \\ v_{\widehat{P}}(T) &= v_P(T) \qquad \qquad \text{for all } T \in \Omega_P. \end{split}$$

(X2) If $P \in \mathfrak{P}_i$ and $\exists T^* \in 2^N \setminus \Omega_P$ such that $\max\{v_P(S) \mid S \subset T^*, S \in \Omega_P\}$ exists and equals a_i , then $\overline{P} \in \mathfrak{P}_i$, where

$$\begin{split} \Omega_{\overline{P}} &= \Omega_P \cup 2^{T^*} \\ v_{\overline{P}}(T) &= a_i & \text{for all } T \in 2^{T^*} \backslash \Omega_P \\ v_{\overline{P}}(T) &= v_P(T) & \text{for all } T \in \Omega_P. \end{split}$$

We claim that \mathfrak{P}_k is the set of extreme points $ex(\mathfrak{M}(P_0))$.

Proof: Establish both inclusions.

Claim 1: $\mathfrak{P}_k \subseteq \exp(\mathfrak{M}(P_0))$.

Proof: Since $\bigcup_{v(S)=a_k} 2^S = 2^N$, we have (X1) \Rightarrow every $P \in \mathfrak{P}_k$ is totally defined. We claim that for $i=0,\cdots,k$, every $P \in \mathfrak{P}_i$ is

- (1) a monotonic partial extension of P_0 satisfying the following:
 - (2) If $R \in \Omega_P$ and $v_P(R) \le a_i$ then $2^R \subseteq \Omega_P$.
 - (3) For all $T \in \Omega_P, \forall \Delta \in \mathbb{R}^{2^n}$ with $\Delta(T) \neq 0$, we have that one of $v_P \pm \Delta$ is not a monotonic partial extension of P_0 .

The result would then follow from the case i = k. Induct on i. The claim holds for i = 0. Assume it holds for i < l and prove it holds for i = l.

Consider any \widehat{P} that arises via (X1) from some $P \in \mathfrak{P}_{l-1}$, and any $T \in \bigcup_{v(S) = a_l} 2^S \backslash \Omega_P$. First show (1) holds for \widehat{P} . For all $A \subseteq T$ with $A \in \Omega_P$, we have P monotonic $\Rightarrow v_P(A) \leq v_P(S) = a_l$. For all $A \supseteq T$ with $A \in \Omega_P$, we have $T \notin \Omega_P \Rightarrow$ by induction hypothesis, $v_P(A) > a_{l-1} \Rightarrow v_P(A) \geq a_l$. So \widehat{P} is a monotonic partial extension of P, hence of P_0 . Now (2) holds for \widehat{P} , which is clear from the construction of $\Omega_{\widehat{P}}$. To get (3), consider first any $T \in \Omega_{\widehat{P}}$. It suffices to take $T \in \Omega_{\widehat{P}} \backslash \Omega_P$. Consider any $A \in \mathbb{R}^{2^n}$ with $A(T) \neq 0$. It suffices to take A(T) > 0. By (X1), $A \subseteq A$ 0, such that $A \subseteq A$ 1, so either A(T) = A2 which directly implies A3 not monotonic, or $A(T) \neq A$ 4 or monotonic, or $A(T) \neq A$ 5 one of A6 is not a monotonic partial extension of A9, since A9, since A9.

Similar arguments show that if $P \in \mathfrak{P}_l$ satisfies the claim then so does any $\overline{P} \in \mathfrak{P}_l$ arising from P via (X2). For (1), consider any $T \in 2^{T^*} \backslash \Omega_P$ where $\max\{v_P(S) \mid S \subset T^*, S \in \Omega_P\} = a_l$; and apply the reasoning of the previous paragraph, with T^* and \overline{P} in place of S and \widehat{P} . As before, (2) is clear. For (3), it suffices to consider any $T \in \Omega_{\overline{P}} \backslash \Omega_P$, any $\Delta \in \mathbb{R}^{2^n}$ with $\Delta(T) > 0$. Either $T = T^*$ for some T^* as defined in the statement of the theorem, in which case $\exists S \subseteq T, S \in \Omega_P$, such that w(S) = w(T), so $w - \Delta \notin \mathfrak{M}(P_0)$; or $T \subset T^*$ for some T^* as defined in the statement of the theorem, in which case $w(T^*) = w(T)$, so $w + \Delta \notin \mathfrak{M}(P_0)$. This completes the induction. \square

Claim 2: $\mathfrak{P}_k \supseteq ex(\mathfrak{M}(P_0))$.

Proof: Some notation: For v a game or PDG, $a \in \mathbb{R}$, let $v^{-1}(a) = \{S \mid v(S) \text{ defined and } = a\}$.

Pick any $(N,w) \in ex(\mathfrak{M}(P_0))$. We show that for $i=0,1,2,\cdots,k,\ \exists P \in \mathfrak{P}_i$ such that $\forall j \leq i,$ $w^{-1}(a_j)=v_P^{-1}(a_j)$. The claim would follow from the case i=k. Induct on i. The proposition holds for i=0; assume it does for all i < l. By induction hypothesis $\exists Q \in \mathfrak{P}_{l-1}$ such that $\forall j \leq l-1,$ $w^{-1}(a_j)=v_Q^{-1}(a_j)$. We'll be done if we can construct $P \in \mathfrak{P}_l$ partially extending Q and satisfying $w^{-1}(a_l)=v_P^{-1}(a_l)$.

An alternative characterization of $w^{-1}(a_l)$ is useful. We claim $w^{-1}(a_l)=\mathfrak{F},$ where $\mathfrak{F}\subseteq 2^N$ is defined by $\mathfrak{F}=\bigcup_{i\,\geq\,0}\mathfrak{F}_i$ where

$$\begin{split} \mathfrak{F}_0 &= w^{-1} \big(a_l\big) \cap \Omega_{P_0} \\ \mathfrak{F}_{i+1} &= \mathfrak{F}_i \cup \underline{\mathfrak{F}}_i \cup \overline{\mathfrak{F}}_i & \text{ where } \quad \underline{\mathfrak{F}}_i &= \Big\{ T \in w^{-1} \big(a_l\big) | \ \exists S \in \mathfrak{F}_i \text{: } T \subseteq S \Big\} \\ & \overline{\mathfrak{F}}_i &= \Big\{ T \in w^{-1} \big(a_l\big) | \ \exists S \in \mathfrak{F}_i \text{: } T \supseteq S \Big\} \end{split}$$

Suppose $w^{-1}(a_l) \neq \mathfrak{F}$. Let $\Delta(S) = \begin{cases} \varepsilon \text{ if } S \in w^{-1}(a_l) \setminus \mathfrak{F} \\ 0 \text{ if } S \notin w^{-1}(a_l) \setminus \mathfrak{F} \end{cases}$ where $\varepsilon = \min\{|w(A) - w(B)| | w(A) \neq w(B)\}.$

Then $w \pm \Delta$ are distinct elements of $\mathfrak{M}(P_0)$ which sum to 2w, contradicting $(N, w) \in ex(\mathfrak{M}(P_0))$.

Also, we may write $\mathfrak{T} = \bigcup_{i=0}^{m} \mathfrak{T}_{i}$ for some finite m.

Apply (X1) to Q to get a new PDG $Q_0 \in \mathfrak{P}_l$. Construct PDGs $Q_1, Q_2, \cdots Q_m$ as follows. Given Q_i define Q_{i+1} by successive applications of (X2) to Q_i , where we let T^* in the statement of (X2) range successively over all $T \in \overline{\mathfrak{T}}_i$ whose worths in Q_{i+1} are yet undetermined. We show that Q_m is the desired P partially extending Q.

Clearly $\mathfrak{F}_0\subseteq v_{Q_0}^{-1}(a_l)\subseteq \mathfrak{F}$. Assuming $\mathfrak{F}_i\subseteq v_{Q_i}^{-1}(a_l)\subseteq \mathfrak{F}$, it follows that $\mathfrak{F}_{i+1}\subseteq v_{Q_{i+1}}^{-1}(a_l)\subseteq \mathfrak{F}$. The first inclusion is because for all $S\in \mathfrak{F}_i$ we have $2^S\backslash\Omega_Q\subseteq v_{Q_i}^{-1}(a_l)\subseteq v_{Q_{i+1}}^{-1}(a_l)\Rightarrow \underline{\mathfrak{F}}_i\subseteq v_{Q_{i+1}}^{-1}(a_l)$; the second inclusion is because any $S\in v_{Q_{i+1}}^{-1}(a_l)$ satisfies $S\subseteq T\in \overline{\mathfrak{F}}_i$ for some T, so $S\in \mathfrak{F}_{i+2}$. By induction, $\mathfrak{F}_i\subseteq v_{Q_i}^{-1}(a_l)\subseteq \mathfrak{F}$ for all i. So $\bigcup_{i\geq 0}\mathfrak{F}_i\subseteq \bigcup_{i\geq 0}v_{Q_i}^{-1}(a_l)\subseteq \mathfrak{F}$ $\mathfrak{F}=v_{Q_m}^{-1}(a_l)$. This completes the proof of Claim 2. \square

Thus
$$\mathfrak{D}_k = ex(\mathfrak{M}(P_0))$$
.

4 References

Letscher, D. (1990), "The Shapley Value on Partially Defined Games," manuscript.

Ventrudo, T., and J. Wallman (1991), "Finding a Value on Partially Defined Games," manuscript.