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When only limited information exists about the worths of certain subsets of
individuals in a game, standard methods cannot compute payoffs. One solution is to
allocate as dictated by some specific extension of the game. The extreme points of
monotonic extensions are characterized.

1 Background

A cooperative game is a pair (N,w) where N :{1,2,---,n} is a set of players and w: 2NVLR
with w((b): 0 gives the worth obtainable by the cooperation of each subset of players. A wvalue
associates with each (N ; w) a vector in R™ representing the payoff to each player. A game is monotonic

if w(S) < w(T') whenever S CT.

Letscher (1990) defines a partially defined cooperative game (PDG) to be a triple (N,Q,v)
where Q C 2N are the coalitions whose worths are known and v: Q=R gives these worths. We require
0,N € Q. An extension of this PDG is a game (N,w) with v(§) = w(S) for all S € Q. We define a
partial extension of this PDG to be a PDG (N, Q,E) where Q C Q and «(S) =%S) for all S € Q. Define

this PDG to be monotonic if w(S) < o(T) for all §,T € Q with S CT.

The object of Ventrudo and Wallman (1991) is to determine value on all PDGs P =(N,Q,v).
One approach is to find the set M(P) of all monotonic extensions of the game, select some “central”
point in this set, and apply some value to this game. A geometric characterization of M(P) facilitates

the selection of such a point.

View a game (N ,w) as a vector in R2 . Tt is easy to verify that M(P) is a bounded convex set.
An eztreme point of a convex set C is an z € C such that if ¢; + ¢, = 2z for some c,,c, € C, then

c; = ¢y = z. We characterize ex((P)), the extreme points of M(P).



2 A Condition Sufficient for Extremity

Index each factor in the product {O,I}b, where b = 2" —|Q|, by a different element of g \ Q.
For any a € {O,I}b, any monotonic PDG P = (N, Q,v), define the game (N, vo‘) as follows. Arrange
the elements of 27V \Q in order of nondecreasing cardinality: Sg,Sq,+,S,. Define v¥(S) = «(S) for all

S € Q. Assume that vo‘(S i) has been defined for all ¢ < . Define

g max{v*($)| § C S and (§ € Qor § =5, for some i < 1)} if o S;)=0
Y50 =\ min{s($)[ S 2 5, § € 2} if o §;) =1

Theorem: If (N,v*)=(N,w)for some a € {0, l}b, then (N,w) € ex(M(P)).
Proof: Ventrudo and Wallman (1991). O

We claim the converse fails. Define P by N = {12345}, Q2 = {S CN||S|=0,1,4, or 5},
©(12345) = 2, v(2) =0,
©(2345) = 1, otherwise v(ijkl) =2
Define the extension (N,w) by w(123) = w(234) = w(235) = w(23) = w(12) = 1;
w(124) = w(125) = 2; for other |S|=2 or 3, w(S) = 0.
which is monotonic. To show w extreme, suppose A € R%" such that w + A are monotonic. Then
w(23) = w(234) = w(235) = v(2345) = A(23) = A(231) = A(235) =0
w(123) = w(23) = A(123)=10
w(12) = w(123) = A(12) =10

Clearly for all other S C N, A(S) =0, making A the zero vector. So w is extreme.

However there is no o such that v® = w, because v*(12) can only be 0 or 2, never 1.



3 A Necessary and Sufficient Condition

Theorem: Consider any monotonic PDG P :(N , QPO,U). Arrange the elements of
{v(S)|S€Q} in increasing order 0 = a; <a,<-:--<a Define families of PDGs Py, Py,---, Py

inductively.
Base step: Py ={P,}.

Inductive steps:

(X1) If Pe P, _, then Pe P, where

Qz=0pu |J 2°

u(S) = a;
vT) =g, forallTe |J 25\Qp
o(S) = a,
vﬁ(T) =vp(T) for all T € Qp.

(X2) ¥ Pe®, and 3T* € 2N\QP such that max{vP(S) | S CT* S €Qp} exists and equals a;, then

P € P,, where
Qp = pu2T”
(T = g for all T € 27 \Qp
vp(T) = vp(T) for all T € Qp.

We claim that P, is the set of extreme points e:c(ﬂﬁ(PO)).
Proof: Establish both inclusions.
Claim 1: ?, C ex(‘.lﬁ(Po)).

Proof: Since U 25 = 2N, we have (X1) = every P € P, is totally defined. We claim
o(S) = ag
that for ¢ =0,---,k, every P€ P, is
(1) a monotonic partial extension of P
satisfying the following:
(2) If R € Qp and vp(R) < q; then 2F C Qp.
(3) For all T eQp,VAE R2" with A(T) # 0,we have that one of vp+ A is not a

monotonic partial extension of P,



The result would then follow from the case ¢ = k. Induct on 7. The claim holds for i = 0. Assume it

holds for 7 < | and prove it holds for ¢ = 1.

Consider any P that arises via (X1) from some P € P; _, and any T € U 25\Q p- First
show (1) holds for P. Forall A CT with A € Qp, we have P monotonic = v P(i(if)gsz(S )=a;. For
all ADT with A€ Qp, we have T ¢ Qp = by induction hypothesis, vp(A) > a; _; = vp(A) > a;. So
P is a monotonic partial extension of P, hence of P,. Now (2) holds for P, which is clear from the
construction of Q}’S . To get (3), consider first any T € Qﬁ. It suffices to take T' € QI’S\QP' Consider
any A GIRZn with A(T)#0. It suffices to take A(T)>0. By (X1), 3§D T, S € Qp, such that

vp(§) = vp(T); so either A(S) =0 which directly implies vp + A not monotonic, or A(S)# 0 = one of

vp £ A is not a monotonic partial extension of Py, since S € Qp.

Similar arguments show that if P € P, satisfies the claim then so does any P € P; arising from
P via (X2). For (1), consider any T € 2T*\QP where max{vp($)| S C T*,S € Qp} = a;; and apply the
reasoning of the previous paragraph, with T* and P in place of S and P. As before, (2) is clear. For
(3), it suffices to consider any T' € Qp\Qp, any A € R2" with A(T)> 0. Either T = T* for some T* as
defined in the statement of the theorem, in which case 3S C T, S € Qp, such that w(S§)=w(T), so
w—A¢gMWPy) or T CT* for some T as et T e sradement of the theorem, in which case

w(T*) = w(T), so w+A ¢ M(Py). This completes the induction. O
Claim 2: 2 D ex(TY(P,)).
Proof: Some notation: For v a game or PDG, a € R, let v ia)= {S | (S) defined and = a}.

Pick any (N,w)€ ez(M(Py)). We show that for i =0,1,2,---k, IP € P; such that Vj <4,

w'l(a j) = vl_;.l(a j)' The claim would follow from the case ¢ = k. Induct on ¢. The proposition holds
for ¢ =0; assume it does for all i <l. By induction hypothesis 3Q € ¥, _; such that Vj<Il-1,

w_l(a j): vél(a j)' We’ll be done if we can construct P € P, partially extending () and satisfying

w'l(al) = vl__—,l(al).



An alternative characterization of w_l(al) is useful. We claim w_l(al) =%, where ¥ C 2N is
defined by ¥ = | J F; where
i>0
= gl
G.FO =w (al) n QPO
‘.Fi+1:€FiUiiU?i where ii:{TGw‘l(al)IBSGGIi: TQS}
F, = {T €wl(a)|3S€F: T2 5}

eif Sew Y (q)\F
Suppose w_l(al) #F. Let A(S)=

0if S ¢ w(a) \ where & = min{| w(A) — w(B)|| w(A) # w(B)}.

Then w + A are distinct elements of ﬂR(PO) which sum to 2w, contradicting (N,w) € ez( ?Jt(PO)).

m
Also, we may write F = U F, for some finite m.
1=0

Apply (X1) to @ to get a new PDG @, € ¥;. Construct PDGs @Q;,Q,,---Q,, as follows. Given
Q; define @; , | by successive applications of (X2) to Q;, where we let T* in the statement of (X2)
range successively over all T G?i whose worths in @, , ; are yet undetermined. We show that @, is

the desired P partially extending Q.

Clearly ¥, C véé(al) C%F. Assuming ¥, C véll_(al) C ¥, it follows that ¥, , ; C vé}{_ 1(al) Cc9.
The first inclusion is because for all S € ¥, we have QS\QQ - ”E):(al) C vé:_}_l(al) =F,;C vé:+1(al);
the second inclusion is because any S € v§:+1(a1) satisfies S C T E—‘ff-,- for some T, so S €F;, 5. By
induction, ¥, C vé:(al) CF for all i. So U ¥, C U vé:(al) CF=>F= véin(al). This completes the

i>0  i>0
proof of Claim 2. O

Thus P, = em(!IR(PO)). O

4 References
Letscher, D. (1990), “The Shapley Value on Partially Defined Games,” manuscript.

Ventrudo, T., and J. Wallman (1991), “Finding a Value on Partially Defined Games,” manuscript.



