Project Number: DH-8901

Computational Methods for the Nucleolus

A Major Qualifying Project Report
Submitted to the Faculty
of the

WORCESTER POLYTECHNIC INSTITUTE

in Partial Fulfillment of the requirements for the
Degree of Bachelor of Science

By

Leslie Ann Reed

Date: April 30, 1989

Approved:

e Forety i~

Professor David Housman, advisor

4 S s A s s g N I B e 0 e TP e i A0 el h Sy s o e i AR D an
R st s S e N e E SR AT B e RS P A R TR S S KRR f-:}i’f_\i. R

el S SRR e S T e A

ACKNOWLEDGEMENTS

I would like to give thanks and gratitude to Professor David
Housman for his support, patience, enthusiasm and continuous
guidance throughout this project. The dedication he gives to his
students goes beyond the "call of duty" and the many hours of
energy devoted to this project are appreciated more than I can
let him know.

I would also like to thank Kristina Szwaya for her guidance

during the development of the initial Pascal implementation.

T S S S S S e ok inim he s 8T b e L RS 20 AT S s TR S ¢ e T e g M T B 1N e et T e oy e b b P A it ¥
B et drk e S fa R LN e B T P N e s L 0 R el R L R BernR 8 T T e 0 e I A Y

ABSTRACT

Two approaches)for computing the nucleolus of a cooperative
game are analyzed. The first is suggested by the definition of
the nucleolus and involves the solution of successive linear
programs. The second is suggested by the consistency of the
nucleolus on reduced games and involves a recursive procedure.
The second approach is shown to be untenable while the first
approach is implemented in pascal and the complexity is

determined theoretically and through numerical experimentation.

I

G - % Lad e AR T R R T b 7 PRy A o
L3 MR N B A AR R S S e S S b b et

IT.

IIX.

Iv.

VI.

Contents

Introduction
1. Definitions
2. Illustration by example

Solving for the nucleolus using the linear programming
algorithm

1. Description and justification of the method

2. Illustration by example

3. Pascal implementation of the algorithm

Complexity of the linear programming algorithm
1. Theoretical
2. Computational

Solving for the nucleolus using the recursive algorithm
1. Description of the method
2. Tllustration of Stearns method by example
2. Explanation of why the method won't work

Conclusions
1. Results ‘
2. Questions for further study

References

. . X . - - . . (s o s 7 > . ol F o o - o ~ Py Fio o ¥
N3 T O (. SRR N o B e b AN Ve S e R s tn ME L et ST ivea YR S it T LF T fa T e Do) L g D g ke oy
R NS SR Pe e PP N ST PO PO e S S e e TR AN RS T S T SR AT SOt e T I T R T T e S aA

INTRODUCTION

DEFINITIONS:

The following are definitions of the key terms used in this
project.
n-person cooperative game- A pair (N,v) where N={1,2,3...n} is
the set of players and v is a real valued coalition function on
the set of all subsets of N with v(¢) = 0. The notation used

will be v(1), v(12), etc.. rather than v({1l}) or v({1,2}).

superadditive- A cooperative game is superadditive if

V(SUT) 2 v(S) + v(T) for all coalitions S and T satisfying

SnT=¢. For this project, assume v(S) is interpreted as the value
the players in S can jointly share if they cooperate as a group.
With this in mind, superadditivity‘has the interpretation that
two disjoint coalitions are able to obtain as much jointly as

each can separately. (ie. v(1) + v(2) < v(12))

allocation- An allocation for the game (N,v) is a vector in RI.
If x is an allocation for the game (N,v), then we call xij the

"payoff" to player i.

Imputation- An imputation is an allocation vector where the sum of

all of the individual allocations is equal to V(N).

lexicographically- A vector y is lexicographically smaller than a
vector z if there is a j for which Y§<z4, and yj=z; for all i<j.
This means that in a dictionary of vectors, y would appear before

Z.

3 . . v b . - N b 2 o AL g8 8, Rlia
b P oy S B O R T T g T, T "l Gy et R TE B A R e | R TR S p R T TR R R et R el A g R
AR, Fe SRl SR M R SRR R S A e B R e e S S A Rt B B e e R U s R A R g

Page 2
excesses- Given a cooperative game (N,v) let e(x,S) = v(s) - x4
be the excess of coalition S relative to the cost allocation ;:
this is a measure of how much coalition S is likely to complain

about the allocation x. Let e(x) be the vector of excesses

e(x,S), S ¢,N , ordered from highest to lowest.

nucleolus- The imputation of (N,v) that minimizes e(x)
lexicographically. In other words, the nucleolus is that
allocation for which the largest complaint is as small as
possible and is voiced by as few coalitions as possible, the next

largest complaint is as small as possible and is voiced by as few

coalitions as possible, etc...

balanced- A set of coalitions {S1, -.+, Sp)} is said to be balanced
if there exist positive numbers Y1:/¥Y2s+++,¥p such that for each
ie N, Zyj=1.

J

ieS:
example:

Consider the set of coalitions {1, 2, 12}, Yy = 1/2, y, = 1/2

and y3 = 1/2. Try player 1; y; +y3 =%+ % = 1.

T S s 208 g ST e T e o s d I NS S B S B LA T e L e i T T B TR S e i e o 0 A T R N W e e 2 TR
P e R e AT R DO Py e ;f,»,_«“_,.-‘-.:«.u_,'_r,f.'k\‘.v:\»‘,«::m:}_.:},;mas-‘a;w,s.»,._4»;@,,.* TS T A A R 2 i - R SR R S D - e \.'-\X»M pECRRP LA AR G

LB

Page 3

ILLUSTRATION BY EXAMPLE:

To better understand these definitions, consider the

following 3-person game:

v(l)=v(2)=v(3)=0

v(1l2) =1
v(13) =2
v(23) =3
v(123) =4

Note that this game is superadditive. To solve for the
nucleolus, choose an allocation and determine the values for the
vector of excesses. Suppose X = [1 1 2]. Recall that

e(x,8)=v(s)-Zxj. Now find the excess for each coalition S.

S 1 2 3 12 13 23
e(x,S) -1 -1 =2 -1 -1 0]
e(x) = [0 -1 -1 -1 -1 -2]

Coalition 23 has the most to complain about while 3 has the
least. The next step is to choose another x and then another,
if necessary, to try to make all coalitions complain as little as
possible while at the same time, trying to make the degree of
their complaints as uniform as‘possible.

Choose x = [.5 1.25 2.25]. Now find the excess for each

coalition S.

S 1 2 3 12 13 23
e(x,S) =D -1.25 -2.25 =-.75 -.75 -.5
e(x) = [-.5 =.5 =.75 -.75 =1.25 =2.25]
Note that this excess vector is lexicographically smaller than
the first excess vector because -.5 is less than O.
This allocation is the nucleolus.
Proof:
The nucleolus, as defined, is the allocation that minimizes

the largest complaint {largest excess). Therefore, if there is a

better allocatlon, we w1ll be able to minimize the excess for

ot xS 5 #3: 12 ol aab e TR R e P T
i SN e Sk o PR EPATNC SR\ P A e % 1?"' B A ""5‘.«;"-,"1.‘ B AR B B ST g B s «’*‘- &0 et N """"" N R e

Page 4

both coalitions 1 and 23. Can we do this?

‘Coalition 1: V(1) - %, < =-.5

0 - Xl < -.5 => Xl > .5
Coalition 23: V(23) - x, - x3 £ -.5

3 = Xz - X3 < =-.5 => Xz + X3 > 3.5

Because V(N) = 4, we know X9 = .5 and x5 + X3 = 3.5. We
cannot determine the specific values of X, and X3, SO we must now

determine if we can minimize the next largest excess.

Coalition 12: V(12) - X1 - X5 £ -.75

1 - X3 - X5 £ =-.75 => X9 + X5 2 1.75
Coalition 13: V(13) - X1 - X3 < -.75

2 -Xl-X3S--75=>X1+X322.75

We already know that x; = .5 so it follows that X5 2 1.25 and

v

X3 2.25. Allocating each coalition its lower bound, we get %, = .5,

I

X5 1.25 and x5 = 2.25, which satisfies X1 + X3 + X3 = 4 and all of

the above inequalities. This allocation is also the allocation we
were testing. Therefore, x = [.5 1.25 2.25] is the nucleolus. You

cannot get a better solution.

FERR N S SRR RN 2

. . 2 o . . N n W e - .2 1 Py 2, . =in X x - el N D
e o oriicrgs o B AR . 4 S 4 g T L P T I S 81 BT PR b, TR T s dk e MR TR S 2 g G it ea BB et Y ey
A AL T i R e S O B MR R D A AR e ORI e R D e M T R e R Tl

Page 5

SOLVING FOR THE NUCLEOLUS USING LINEAR PROGRAMMING

DESCRIPTION AND JUSTIFICATION OF THE METHOD:
Because the problem of solving for the nucleolus is
minimizing the excesses subject to certain constraints, it is

possible to solve these problems using a linear programming

approach.

The optimization problem is as follows:

Objective: min max e(x,S)
(x:2xi=v(n)) ¢cSeN
X;2v(i)}

Solving this optimization problem won't necessarily
determine a unique solution. If the initial solution is not
unique, you must fix the values of excesses that cannot be
lowered and then solve the new problem to minimize the maximum of
the rest of the allocations. Continue in this manner until a
unique optimal solution is obtained. This optimization problem
can be transformed into a linear programming problem by letting a
= max e(x,S) and introducing linear constraints.

The procedure computes the nucleolus of a game by solving a
sequence of linear programs until the set of feasible solutions
is a singleton. Specifically, let @g = 0, NFg=Fp=(N}, SFy = ¢,
uy = v, and k = 0. Let (xk+1,ak+1) be an optimal solution to the
primal linear program

Objective: min a
Constraints: z x5 ux(S) for S € Fy
ies

= Xy + a
ieS

v

up(S) for s ¢ Fp

= v(1i) for i € SF,
X5 2 v(i) for i ¢ SF,

o T T I S S Py sl Ra b T S B s ST B i S T e A AR L S wits SRTE B T e g S S e 2o 0 ek
S Rl D O R AR i R 3 S e b R A Y T TR e N R e T e TR e B S e FrR e R R e

Page 6

Let (yk+l,zk+l) be a corresponding optimal solution to the dual

linear program

Objective: max I up(S)yg + = v(i)zj
s i
Constraints: Tys + z4 = 0 for i e N
s3i
S¢Fy
Ys > 0 for S ¢ Fy
zi 2

0 for i ¢ SFy-
1f (xk+1,ak+1) is the unique feasible, and so optimal, solution
to the primal linear program, then xk*1l is the nucleolus.

If (xk+1, @k+1) is not the unique feasible solution, the LP
must be updated in the following manner. If a dual optimal
variable from this solution has positive value, the corresponding
inequality becomes an equality, the value of @x4+1 1s substituted

into the equation and the variable is labeled a new free

variable.

NFy4q = (S £ Fx : y¥t1s > o),
Fr+1 = Fx U NFyyg,
SFx+1 = {1 € SFy : zK*1. > 0}, and
Ugiq (S)= {uk(S) = apyq for S € NFy4q

uk(S) for s ¢ NFk'i'l}

Now increment k and solve the new linear program.

Because the primal LP will have a large number of
constraints, it may require a lot of computational time when it
is solved. Therefore, the dual LP will be solved using the
revised simplex method. The dual will have more variables but

less constraints which will decrease calculation time.

R T T i T 1 SRR RE e S -~ T im0 i ST g At e L LR S e ey R i e R R S
e U L NS S G RS SRR SO Mo T P Bl M L BRSO A R A e R M e e e R B e SN RTAREE

il

Page 7

The trade-off is that determining the initial basis when solving
the dual LP is more difficult than when solving the primal LP but
the calculating time saved is worth the difficulty.

The revised simplex method found in Chvatal (1980) was used
to solve the dual LP, with a few alterations. Rather than
solving Ax = b, we solved x = A™lb. The former is solved in

order n3

while the latter is solved in order nZ2. By using a
modification of the algorithm in James Endersby's (Central State
University, 1983) paper "Toward Efficiency In Linear
Programming", we are ensured integer values so we won't encounter
the round-off errors that tend to occur when updating inverse
matrices. Therefore, it isn't necessary to use more difficult
triangular factorization and updating procedures.

James Endersby proves that integer values can be ensured
when solving linear programs when a common denominator for all
elements is used. The rules to control the denominator are:

1. Denominator (D) of the original tableau is 1. 2. Off pivot
elements become (ApxAi ij - A, Alk) / D where A rk is the pivot
element and D is the common denominator. Make no changes to the
pivot row. 3. The pivot element is the denominator for the new
tableau. |

Another alteration made to Chvatal form is that we use,
store and update a free variable matrix which becomes the start
of the initial basis for the next LP. Free variables are put
into the basis immediately and then they never exit.

The last alteration was made because a unique solution may not

be found after the initial LP is solved. The original primal LP

must be updated and solved again. This is done by changlng the

o R ik ok ,aa_wt.- R T ,J_d e PR '*»‘.,%»_‘ y,»' ﬂ'.“’\ Syt th,;’é” st Sty

Page 8

primal constraints that correspond to the dual variables that
have positive value from inequalities to equalities and labeling
these dual variables as new free variables. If the optimal value
for a dual variable is positive, the primal equation that
corresponds to that dual variable must be an equality for all
primal optimal solutions. For these constraints, the value for
alpha must also be inserted. Now we have a new primal and dual
with a new a. (This a is interpreted to be the next largest
excess value.) This new LP must be solved to try to reach a
unique primal optimal solution.

The initial basis for the new LP is determined in the
following manner:
Note: when a variable is entering the basis, the constraint
coefficient column corresponding to that variable is added to the
basic variable matrix to determine whether or not it is linearly

independent of the other basic variables.

step 1- Put the free variables from the previous LP's basis in
the new basis.

step 2- If rank equals n then go to step 9. If not and
there is still at least one variable whose dual
optimal value in the previous LP was positive, then
choose one of the those variables to enter the basis.
This is a new free variable.
Also change the value of the corresponding objective
function coefficient. If there aren't any more new
free variables, go to step 4.

step 3- Do a column reduction to determine whether or not the

Page 9

new variable is independent of the others. If it is,
add it to the basis. Otherwise, don't add it to the
basis. Return to step 2.
step 4- Put the variables whose dual optimal value in the
previous LP equals zero in the nonbasic variable list.
step 5- Choose the first nonbasic variable in the list and its
complement to try to enter them into the basis.
The following rules apply:
1. If the complement is already a basic variable, add
the nonbasic variable being considered to the
basis . Then go to step 6.
2. Otherwise, check to see if the complement is
redundant. If it isn't, add the nonbasic variable
and its complement to the basis and go to step 6.
If it is redundant, do step 5 again with the next
nonbasic variable.
step 6- If rank equals n+l go to step 8. If not choose a
nonbasic variable to enter the basis.
step 7- Do a column reduction to determine whether or not the
new variable is independent of the others. If it is,
add it to the basis. Otherwise, don't add it to the
basis. Return to step 6.
step 8- solve next LP.

step 9- optimal solution is found.

Page 10

ILLUSTRATION BY EXAMPLE:
To illustrate how this method works, consider the 3-person game

from above:

V(1)=v(2)=v(3)=0

v(12) =1
v(13) =2
v(23) =3
v(1l23) =4

For this game, the LP is as follows:

min

a nmin «a

S.T. a2 0 - X1 S.T. xq + a 20
a =20 - X5 X9 + a 20
a =20 - X3 X3 + a2 0
a 21 - (X1 + X5) Xy + x5 + a 21
a 2> 2 - (Xl + X3) Xl + X3 + a 2 2
a2 3 - (X3 + X3) Xo + X3 +a 23
Xl + X2 + X3 = 4 Xl + Xz + X3 = 4
Xl,Xz,X3 >0 Xl,Xz,X3 20

The dual that corresponds to this LP is:

max Oyl +0y2 +OY3 + le +2y13 +3Y23 +4Y123+Osl+082+083

S.T. yl +OYZ +OY3 + y12 + y13 +0Y23 + Y123+ Sl =0
0y; + yp +0y3 + yj5 +0y33 + yp3 + yi33+ Sy =0
Oy; +0y; + y3 +0yy5 + y33 + yp3 + yia3+ S3 =0
Y1 * Yo +¥3 + Y12+ Y13 + ¥Ya3 +0¥7153 =1

¥1,¥2:¥Y3/¥12,¥13,¥23,51,52,53 2 0
Y123 1s a free variable

Solving the dual using the revised simplex method enables us
to determine the optimal primal solution as well as the optimal
dual solution.

The first dual and primal optimal solutions are:

dual primal
y, = 1/2 a = -1/2
Yi3 = 0 X1 = 1/2
y23 = 1/2 X2 = 3/2
Y123 = —1/2 X3 = 2

Note: These solutions give the values of the basic variables.
The dual optimal solution is unique. The primal optimal
solution is one of many optimal solutions that satisfy the

equations x,=1/2, x, + X3=7/2, X321, X322. Since there is more

Page 11

than one allocation that satisfies these equations, we need to
update the LP and solve it again. The equations that correspond
to y; and y,3 become equalities and the value of alpha (-1/2) is
inserted into the equations that these variables represent.
These variables become new free variables.

The new Primal LP is:

min as
S.T. x1 = 1/2
X2 + a2 20
X3 + az >0
Xl + X2 + a2 21
Xl + X3 + a2 2> 2
X1 + x5 + x5 = 4

X1,Xp,%X3 2 0
The dual that corresponds to this LP is:

S:T. yl +OY2 +OY3 + le + y13 + 0y23 + Y123+ Sl =0
0y; + yp +0y3 + yi5 +0yj33 + yp3 + yja3+ S, =0
0y; +0y; + y3 +0yj5 + y33 + ya3 + yia3+ S3 =0
O0y; + ¥ + ¥y3 + y15 + ¥33 + 0yy3 +0yj53 =1

¥2:¥3:¥12/¥13+51,52,83 2 0
Yi1: Y23, Y123 are free variables

In solving this new LP, it would be best if we could let the
variables in the initial basic feasible solution consist of the
basic variables inbthe optimal solution from the previous LP.
Unfortunately, for this new LP, having Y1, Y13+ Y23, and yq53 in
the basis isn't feasible because the constraint coefficient
columns that correspond to these variables are not linearly
independent. Therefore, we must change at least one of the
variables.

We find that the first basic matrix for this dual is:

Y1 Y2 Yi3 Y123 RHS
0 0 1° 70 1/2
1 0 0 o0 0
0 1 0 0 1/2
0 0 o 1 -1/2
0 0 0 o 1

(note: y;, Y3, Y13 and yj,3 are the basic variables.)

Page 12

We determined this initial feasible basis using the eight step
procedure from above. Step 1 put Y123 the(only free variable
from the previous LP, into the basis. Step 2 put y; into the
basis because it is a new free variable. Y23 is also a new free
variable but is determined through step 3 that it is redundant so
it is not put into the basis. Step 4 puts y, and its complement
Y13 into the basis as they are nonbasic variables and not

redundant.

Now we find the second dual and primal optimal solutions:

dual primal
yl = -1/2 (04 = "3/4
Yi3 = 1/2 X1 = 1/2
Yio = 1/2 X9 = 5/4
Y123 = -1/2 X5 = 9/4

This solution suggests the allocation X1=1/2, x%5=5/4, x3=9/4.
Since this is the only allocation possible, we have found the

nucleolus. Therefore, (N,v) = (1/2, 5/4, 9/4).

Page 13
PASCAL IMPLEMENTATION OF THE ALGORITHM:

The program is separated into four files: Nuc.pas,
Initial.pas, Setuplp.pas and Solvelp.pas. Nuc.pas contains the
main program and calls the other three files to perform various
tasks. 1In Initial.pas, dual variable linked lists for basic and
nonbasic variables are initialized. 1In Setuplp.pas, the basic
feasible solutions for the first LP and all updated LP's, if
needed, are determined. This file also updates LP's. 1In
Solvelp.pas, the revised simplex method, with the modifications
discussed earlier, is performed.

The pascal implementation uses the following variable names

to represent the symbols of the linear program being solved(p.5):

Algorithm Pascal Implementation Explanation

(o' Alpha

S Basic”.index, Nonbasic_head".index indicates coalition
name.

constraint Procedure accessed through

coefficients column.

X X

Fy,SFy Free Matrix of free
variables.

Ux(S) Basic[j]".obj, Dual_variable pointer Right hand side of
equation. Up(S) - «
if new free;
otherwise, Up(S).

Ys Basic_value[j] if Basic[j]".index=S
and Basic[j] " .slack
=false.

zZi Basic_value[j] if Basic[j] .index=i
and Basic[j] .slack
= true.

V(I) Basic”.obj, Nonbasic_head”.obj Right hand side of
equation for slack
variables. Equals
the value of the
singleton it
represents.

Page 14

THE PROGRAM:
Nuc.pas:

Procedure Nucleolus_simplex(var G: Game; var x: Allocation)
{This program assumes: Iv < Vv (N))
{This procedure calculates the nucleolus using the)
{revised simplex method.}

Type Vector = array[player] of integer;
Matrix = record
num tarray([player,player] of integer;
den :integer;
rank :player;

end;
Dual_variable pointer = “Dual variable;
Dual_variable = record

index: Coalition;

slack: Boolean;

obj: Real;

comp: Dual_variable pointer;
next: Dual_variable pointer;

end;

Basic_array = array([Player] of Dual_variable pointer;
Var Alpha ¢ Real;

Basic ¢ Basic_array;

Basic_value : Vector;

Nonbasic_head ¢ Dual_variable_ pointer;

AB ¢ Matrix;

AB_inverse ¢ Matrix;

Free ¢ Matrix;

Free_inverse : Matrix;

Basic_variables : Player;

Solution_found : Boolean;

{$1 nucwrite)
{$1 initial)
{$1 setuplp)
{$i solvelp)

begin
Write_Setup;
Basic_variables := G.n + 1;
Setup_dual variables;{initialize the basic and nonbasic 1linked lists.)

setup_initial_linear_program; {determines an initial LP.)
repeat

Solve_linear_ program; {executes the revised simplex method)
Setup_linear_ program(solution found); { Sets up next LP}
Write_LP;

until Solution_ found; {repeat until a unique optimal solution)

{for the nucleolus is found.)

Write_Time;
end; ({of this procedure)

Page 15

Initial.pas:
procedure setup_dual_variables;

{This procedure puts all variables except the)
{grandcoalition into nonbasic head and puts)}
{the grandcoalition into basic)

var first_g,next_p,next_q :dual_variable_pointer;
p,q,1 :dual_variable pointer;
m, f :integer;
c :coalition;
i :player;

begin
new(1l);
basic[1l] := 1;
with 1° do {put to grand coalition)}
begin {into basic variable linked list.)}
index grand (G) ;
slack false;
obj G.v[grand(G)];
comp nil;
next nil;
end;

new (next_p) ;

new (next_q) ;
nonbasic_head := next p;
first_gq := next _q;

for c := 1 to ((grand(G) + 1) div 2 - 1) do {put all other variables)

begin {into the nonbasic linked)
p := next_p; {list.)
:= next_q:;
new (next_p);
new (next_q);
with p® do
begin
index := c;
slack := false;
obj = G.v[c]:
comp := q; {this keeps track of the complement)}
{of the variable in question.)
next := next_p;
end;
with q° do
begin
index := grand(G) - c;
slack := false;
obj = G.v[grand(G) - c];
comp := p;
next := next q;
end;

end; {(of the for c loop)

Page 16

for i:= 1 to (G.n - 1) do

begin
q := next_q;
new (next_q) ;
with gq° do
begin
index := singleton(i); {put the slack vars into the}
{nonbasic variable linked list)
slack := true;
obj = G.v[singleton(i)];
comp := nil;
next := next q;
end;
end;
q := next_qg;
with g do
begin
index := singleton(G.n); {end the linked list with the)
{final slack variable}
slack := true;
obj = G.v[singleton(G.n)];
comp := nil;
next := nil;
end;
P .next := first q; {link the two lists together}
dispose (next_p);

end; {of the procedure)

procedure column(d:dual_variable pointer; var a:vector;
free variable:boolean) ;

{This procedure generates columns.}

Var 1i,j : player;

begin
for i := 1 to G.n do {component i of the vector}
Begin {a is one if player i is in})
if element(i,d”.index) then a[i] := 1 {the coalition d.index)
else a[i] := 0; {otherwise, it is zero.)
end;

if free_variable or d".slack then a[G.n + 1]:=0 (if the variable is)
{free or slack, this row, that)
{corresponds to a should have a 0.}

else a[G.n + 1]:=1;

end; {of this procedure}
Setuplp.pas:

function First_nonzero(var M tMatrix;
var Jj :Player) : Player;

{This procedure determines the first nonzero row of column I}
{If there are no nonzeros, this function returns basic_variables + 1.)

Page 17
var i :player;

begin
i:=1;
while (M.num[i,j] = 0) and (i <= basic_variables) do i := i + 1
first nonzero := i;

end;

.
’

procedure Column_pivot(var M1, M2 :matrix;
i, j :player) ;

{to the (i,]j) element of M1. M2 }

{ }
{This procedure performs a pivot on [Ml} with respect)
{ }

var k, 1l: Player;
M1l _il:integer;
M1l_ij:integer;

key :char;
begin
M1l_ij := Ml.num[i,3j]:
for 1:=1 to Ml.rank do ({reduce all nonpivot element)
if 1 <> j then {values in column 1 to 0}
begin

Ml il:=Ml.num(i,1l];
for k:=1 to basic_variables do

begin
Ml.num([k,1] := (M1_ij*Ml.num(k,1] - M1l_il*Ml.num[k,3j])
div Ml.den;
M2.num(k,1] := (M1_ij*M2.num(k,1] - M1_il*M2.num[k,j])
div Ml.den;
end;
end;
Ml.den := M1_ij; {the denominators equal the pivot element)
M2.den := M1 _ij;

end; {end of this procedure}

procedure Rearrange_columns (var M1, M2 tmatrix;
var j, k :player) ;
{This procedure rearranges cyclicly, columns j,j+1,...k}
{ }
{ of M=(M1| in the order k,j,j+1,...k-1. }
{ M2 }
{ }
Var tempvl, tempv2 :vector;
i,1 :integer;
begin
for 1 := 1 to basic _variables do {put column k of M}
begin {into temporary storage.)
tempvl([i] Ml.num[i,k];

tempv2([i] := M2.num[i,k]:;

Page 18

end;

for 1 := k-1 downto j do {Move columns j,...,k-1}
begin {over one column.)
for i := 1 to basic_variables do
begin
Ml.num[i,1+1] := Ml.num(i,1];
M2.num[i,1+1] := M2.num[i,1];
end;
end;

for i := 1 to basic_variables do {Put the column to be moved}

begin {into the correct space.}
Ml.num[i,Jj] tempvl[i];
M2.num(i,j] tempv2[i];
end;
end; {of this procedure)

procedure Column_insert(var M1, M2 : matrix; var A : vector) ;

{This procedure adds new columns to the basic matrix.}

var i,j,k,1 :player;

temp :integer;
begin
k := Ml.rank + 1;
Ml.rank := k; {Put column k into the basic matrix.)}

M2.rank := k;
for i:=1 to basic_variables do
begin
Ml.num[i,k] := A[i] * Ml.den;
{Setup the identity)
{matrix column corresponding to column k}
if i = k then M2.num[i,k] := M2.den else M2.num[i,k] := 0;

end;
for j:= 1 to Ml.rank-1 do {pivot on element i,j if)
begin . {element i,k is nonzero}

1l := first nonzero(M1,j);
if Ml.num[1l,k] <> 0 then

begin
for i := 1 to basic_variables do
begin
Ml.num[i,k] := Ml.num[i,k] - A[l]*Ml.num[i,j];
M2.num([i,k] := M2.num[i,k] - A[l]*M2.num[i,j];
end;
end;
end;

{find the first nonzero row in the kth column of M1}
i := first_nonzero(M1,k);

if i <= basic_variables then
{if a nonzero row i element is found in col k,)
{rearrange columns in lower triangular form)
{and pivot on the nonzero element;)
J := 1; while first_nonzero(M1,j) < i do j := 3 + 1

3
’

Page 19

if j < k then Rearrange_columns(M1,M2,3,k);
Column_pivot (M1, M2, i, j);

end
else {otherwise, remove the column of zeros)
begin
Ml.rank := Ml.rank - 1;
M2.rank := M2.rank - 1;
end;

end; {end of procedure)
Procedure Insert_new_free_variables(var solution_found :boolean);
{This procedure puts the variables that have positive value in the}

{previous solution into the basic matrix and the free matrix and }
{changes the value of the corresponding objective coefficients.}

var X_column :vector;
i,old_free_ rank :player;
temp tdual_variable;
p :dual_variable pointer;
begin
i:= Free.rank + 1; {start looking at the basic variables}

{that come after the old free variables)

while (i <= basic_variables) and not solution_ found do

begin
if (basic_value[i]*AB_inverse.den > 0) then {if the value of the)
begin {dual variable is positive,)
column(Basic[i],x_column, true); {generate the column}
old_free_rank := Free.rank;

column_insert (Free,Free_inverse,x_column) ;

if old_free_rank <> Free.rank then (if the variable isn't)
begin {redundant, add it to the)
If not Basic[i]".slack then {basic variable list.}
Basic[i]".obj := Basic[i]".obj - Alpha;
if i > Free.rank then basic[Free.rank] := basic[i];
end;

solution_found := (Free.rank = G.n)

end
else
begin
basic[i]".next := nonbasic_head; (if the dual variable)
nonbasic_head := basic[i]; {equals zero, put it}
{back into nonbasic_head.)}
end;
i:=i+1;

end;
end; {of this procedure)
Procedure move_free variables;

{This procedure puts the free matrix from the previous LP plus}
{the new free variables into the basic matrix for the new LP)

Page 20

var i,j : player;
begin
for j:= 1 to Free.rank do
begin
for i:=1 to basic variables do
begin {copy the free variables from)
AB.num[i,j] := Free.num[i,j]: {previous LP's into the}
AB_inverse.num[i,j] := Free_inverse.num[i,j]; (basic matrix)
end;
end;
AB.rank := Free.rank; {Update ranks and denominators}
AB_inverse.rank := Free_ inverse.rank;
AB.den := Free.den;

AB_inverse.den := Free_ inverse.den;
end; {of this procedure)
Procedure remove nonbasic_variable(var x :dual_variable pointer);

{This procedure removes x from the nonbasic linked list.)
{x_previous immediately precedes x in the nonbasic variable list.)

Var x previous, p : Dual_variable pointer;

found_x_ prev boolean;
Begin
If x = nonbasic_head then nonbasic_head := x".next
else
begin

P := nonbasic_head;
while p“.next <> x do p := p~.next;
p~.next := x".next;
end;
end; {of this procedure)

Procedure Insert_complement_pairs;

{This procedure inserts a nonbasic variable and its }
{complement into basic if the complement is not already)
{in basic and they are not redundant. If the complement}

{is in basic, insert the nonbasic variable.)}

Var p,q ¢ Dual_variable pointer;
In_basis ¢ Boolean;
X : Player:;
Old_AB_rank ¢ Integer;
a ¢ Vector;
Begin

P := nonbasic_head;
O0ld_AB_rank := AB.rank;
while (0ld_AB_rank = AB.rank) do
begin
If (p".comp <> nil) then
begin
Column(p,a, false); {generate a nonbasic column}

Page 21

Column_insert (AB,AB_inverse,a);

In_basis := false; {check to see)}
X = 1; {if the complement}
while (X < AB.rank) and (not In basis) do {of the}
begin {nonbasic var)
In_basis := (basic[X] = p~.comp):; {generated}
X :=X + 1; {above is in basic)
end;
If In_basis then {(If it is in Basic,)
begin {add the nonbasic column)
Basic[AB.rank] := p; {to basic and remove it}
remove_nonbasic_variable(p) ; {from nonbasic_head.)
end
else
begin
q := p~.comp;
colunmn(qg,a, false); {If it is not in Basic,)

column_insert (AB,AB_inverse,a); {generate complement and)
If Old_AB_rank + 2 = AB.rank then {try to insert into}

begin {AB. If not redundant, add the}
Basic[AB.rank - 1] := p; {nonbasic var and its}
remove_nonbasic_variable(p); {complement to Basic and)
Basic[AB.rank] := q; {remove them from}
remove_ nonbasic_variable(q):; {nonbasic_head. }

end

else
AB.rank := 0l1d_AB_rank; {If redundant, try next)

{nonbasic variable.)
end;)

end; {if p“.comp loop}

P := p .next;

end; {while p loop)
end; {of the procedure)

Procedure Insert_nonbasic_variables;

{This procedure inserts eligible nonbasic variables into the basic)
{matrix and then puts the variable into the basic variable linked)
{list and removes the variable from the nonbasic linked list.}

var p
a

tdual_variable pointer;
:vector;

old_ab_rank :integer;

1

begin

tplayer;

p:=nonbasic_head;
while (p <> nil) and (AB.rank < basic_variables) do

{while not at end of linked list and more variables)
{are needed for the basis, :)}

begin

column(p,a, false); {generate a nonbasic variable column)
old_ab_rank := AB.rank;
column_insert (AB,AB_inverse,a);

Page 22

if old_ab_rank <> AB.rank then {If the column is not redundant, }
begin {add it to the basic variable list. }
basic[AB.rank] := p;
remove_nonbasic_variable(p);
{remove the new basic variable from the)
{nonbasic variable linked 1list.)
end;

if p=nil then p := nonbasic_head
else p:=p”.next;
end;
end; {of this procedure}
procedure find_dual_variable values;
var i : player;
begin
for i := 1 to Basic_variables do
begin
basic_value[i] := AB_inverse.num[i,basic_variables];
end;
end; {procedure)

procedure setup_initial_linear program;

{This procedure initializes the first linear program}

var a :vector;
i tplayer;
begin
column(basic[1],a,true); {generate grandcoalition column}
for i := 1 to ba51c _variables do
begin

Free.num[i,1]: a[1],

if i = 1 then Free_inverse. num[i,1l]:=1 ({row corresponding to «)

else Free_inverse. num[1 1] := 0; ({consists of 0's if variables)
{are free and 1's if not free}

end;
Free.rank := 1; {initialize ranks, denominators, }
Free.den := 1; {and free matrix.)

Free_inverse.rank := 1;

Free_inverse.den := 1;

move_free_variables;

Insert_complement pairs;

Insert_nonbasic_variables; {setup the initial basic variable list)
Find_ dual _variable_values; {calculate values of the dual variables.)}

end; {of the procedure.}
procedure Setup_linear_program(var solution found :boolean);

{This procedure sets up the basic variables before the LP is solved)

Page 23

begin
Solution_found := false;
Insert_new_free variables(solution_found) ;
{Insert variables in current LP with value > 0}
{into the matrix.)

Move_free_variables; {save the free variable matrix)
If AB.rank < G.n then
begin
If AB.rank < basic_variables then {if you need more basic)
begin {variables to execute the revised)
Insert_complement pairs; {simplex method,)
Insert_Nonbasic_variables; {search for eligible}
end; {nonbasic variables.)}
end
else {if you have G.n independant equations,)
begin {the optimal solution has been found.)
Solution_Found := true;
end;
Find_dual_variable values; {Calculate dual variable values.)

end; {of this procedure}

Solvelp.pas:

{This is the revised simplex algorithm applied to the dual to)
{the minimize the maximum excess linear program. }

Procedure Stepl;

{This procedure executes step 1 of the revised simplex method)
{which solves for the value of the primal variables.)

var i,j :player;
sum treal;
Begin

for i:=1 to basic_variables do {counter for column of}
begin {inverse basic matrix)
sum:=0;
for j:=1 to basic_variables do {counter for row of inverse)
{basic matrix and element of obj. coeff. vector)
begin
sum:=sum + (AB_inverse.num[j,i]*Basic[j]".obj);
{mult. obj coeff values by inv. bas. mat.)
end;

X[i]:=sum / AB_inverse.den;
end;

end; {of this procedure)

Procedure Step2(var enter tvector;
var before_enter var tdual_variable pointer;
var enterpointer tdual_variable_ pointer;

var LP_solution_found :boolean);

Page 24

{This procedure calculates step 2 of the revised simplex method)
{which determines the entering variable.}

var p tdual_variable_ pointer;
1 :player;
sum, answer, zero :real;

Begin

answer:=0;

p:=nonbasic_head;

before_enter var := nil;

Zero := (1lE-10 * G.v[grand(G)]):; {reset 0 because of round-off}

while (p <> nil) and (answer <= Zero) do
{while there is an unexamined)
{nonbasic variable and it is not}
{profitable to enter that variable:}

Begin
column(p,enter, false) ; {generate the nonbasic column}
sum := 0;
for i:= 1 to basic_variables do
begin
sum:=sum + (enter[i] * x[i]); ({get product of nonbasic)
end; {col and x}
answer:= (p~.obj) = (sum);

{find the diff between obj coeff val and sum)

If answer <= Zero then

begin
before_enter_var := p; {need to know which variable preceeds)
p :=p " .next; {the entering variable.)}

end;

end;
LP_solution_found := (p=nil);
enterpointer := p;
end; {of the procedure)
Procedure Step3(var D,enter :vector);

{This procedure calculates step 3 of the revised simplex method)
{which determins the D vector.}

var sum :integer;
s A | :player;

begin
for i := 1 to basic_variables do
begin
sum := 0;
for j := 1 to basic_variables do
begin

sum:=sum + (AB_inverse.num[i,j] * enter[j]);
{find product of entering col and basic matrix inverse)
end;

Page 25

D[i] := sum; ({store the answer product in D vector}
end;

end; {of this procedure)

Procedure Step4 (var exit_index :player;
D :vector) ;

{This procedure calculates step 4 of the revised simplex method}
{which determines the exiting variable.}

var t,temp : real;
i ¢ player;
b i ¢ real;
begin
t==1; {signal first ratio computation)

for i:=(Free.rank + 1) to basic _variables do
{for each element in the vector)
{that is not free)

begin
D_i := D[i]/AB_inverse.den;
If D i > 0 then
begin

temp:= basic_value[i]/D[i];

if (temp < t) or (t = -1) then {if the temp is)

begin {less than current t then)
t:= temp; {put the smaller temp value in t}
exit_index:=i; {and mark that element as exiting variable)
end;
end;

end;
end; {of this procedure)

Procedure step5(var before_enter_var :dual_variable pointer;

var enterpointer tdual_variable pointer;
var exit_index :player;
var D tvector) ;

{This procedure calculates step 5 of the revised simplex method)
{which updates the basic matrix and the dual variable values.}

var i,j,m :player;
temp :dual_variable_pointer;
D_i,D m :integer;
begin
m:=exit index; {indexes pivot row}

Dm := D[m];
for i := 1 to basic_variables do {until the last row of the matrix:}

begin
D_i := D[i];
if i<> m then {skip the pivot row)
begin
basic_value[i] := ((D_m*basic_value[i])-

(D_i*basic_value[m])) div AB_inverse.den;

Page 26
{pivot affects dual variable values.)

for j := 1 to basic_variables do
begin
AB_inverse.num[i,j] := ((D_m*AB_inverse.num[i,j]) -
(D_i*AB_inverse.num[m,j]))
div AB_inverse.den;

{pivot affects inverse matrix.)
end;

end;
end;

AB inverse.den := D m; {update denominators.}

temp := basic[exit_index]: {put entering variable into}
basic[exit_index] := enterpointer; {basic array and put exiting}
If before_enter_var <> nil then

before_enter_var”.next := temp {variable into the}
else
nonbasic_head := temp;
temp”.next := enterpointer”.next; {nonbasic linked list.)

end; {of this procedure)

Procedure Solve_for alpha;

{this procedure calculates the value of alpha (the solution))

var i :integer;
sum :real;

begin
sum :
i 3

0]
1

we weo

while i <= basic variables do {until the last variable,}

begin {sum the product of the obj coeff value}
{and dual variable value}

sum := sum + (basic_value[i] * basic[i]".obj):
i t= i+1;
end;

alpha := sum / AB_inverse.den; {this sum is the value of alpha}

end; {of this procedure}
Procedure Solve_linear_ program;

{This procedure executes the revised simplex method.)

var enterpointer,before_enter_var :dual_variable pointer;
exit_index

:player;
enter, D tvector;
LP_solution_found :boolean;

Begin
repeat

stepl;

Page 27

Write Basis;
step2 (enter,before enter var,enterpointer,LP_solution_found) ;

if not LP_solution_found then
begin
step3 (D, enter) ;
step4 (exit_index, D) ;

step5 (before_enter_var, enterpointer,exit_index,D) ;

end;
until LP_solution_found;
Alpha := x[basic_variables];

end; {of this procedure)

Page 28
COMPLEXITY OF THE LINEAR PROGRAMMING ALGORITHM
There are three multiplicative factors to consider when
determining the complexity of the linear programming algorithm.
These factors are the number of LP's to be solved, the number of
pivots that need to be performed and the number of calculations

within each pivot. Each factor is possibly exponential.

THEORETICAL COMPLEXITY:
Number of LP's that need to be solved > 20-1 - n + 1

Proof: Let x = (1,1,...,1) and define a game in the following

way:
S v(S) e(X,S)
1 -a + 1 -a
2
(n-2) -a + 1
(n-1,n) -a + 2 -a
K player coalitions -a + 2K - n -a + K- n
that include both or
neither of (n-1) and n
K player coalitions -+ 1-n+K -a + 1 -n

that include exactly
one of n-1 or n

The game we define must be superadditive as that is required
and x=(1,...1) will be the nucleolus . Choose the value of a so
that the excesses of each of the 3 subgroups of coalitions
differs by one unit. If strict superadditivity (V(S) + V(T) <
V(SUT)) holds for this @, then subgroup 2 can be perturbed so
that while x stays the same, there are different alphas for each
coalition in this subgroup. There are eight cases to consider to

test for strict superadditivity.

Page 29

(Note: only the first and last lines are included. The steps
taken to arrive at the result are omitted.)

1st case:
2 singletons (not n-1 or n)
vV(s) + V(T) < VvV (SUT)
(¢ + 1) + (& + 1) < -a + 4 - n
n-2 < a

2nd case:
1 singleton (not n-1 or n) AND
1 K player coalition w/neither or both

V(S) + V(T) < V(SUT)
(& + 1) + (- + 2K - n) < -a + 2(K+ 1) -n
-l < «a

3rd case:
1 singleton (not n-1 or n) and (n-1 , n)
vV(s) + Vv(T) < V(SUT)
(e + 1) + (& + 2) < =-a+ 6 - n
n-3 < ¢«

4th case:
A K and an L coalition containing neither or both of n-1 and n

V(S) + V(T) < V(SUT)
(& + 2K - n) + (~a + 2L - n) < -a + 2(K+L) - n
-n < «

5th case:
A K and an L coalition that contain exactly one of n-1 or n

V(S) + V(T) < V(SUT)
(ra+ 1 -n+K)+ (-a+1-n+1L) < -a+ 2(K+L) - n
2-n-K-L < ¢

6th case:
1 K coalition w/ neither n-1 nor n AND
1 L coalition w/ exactly one of n-1 or n

V(S) + V(T) < V(SUT)
(¢ + 2K - n) + (ra+1-n+01L)<-a+1-n+ (K+L)
K-n«<oua

7th case:
1 singleton (not n-1 or n) and
1 K coalition with exactly one of n-1 or n
vV (S) + V(T) < V(SUT)
(=a + 1) + (¢ + 1 - n + k) < =a+ 1 -n+ (K+1)

0 < «

Page 30

8th case:
The coalition (n-1,n) and one K coalition with neither n-1 nor n

vV (S) + V(T) < V(SUT)
(ma + 2) + (ra + 2K - n) < (-a+ 2K + 2 - n)
0 < a
The Result: Choose a to be greater then n - 2 and strict

superadditivity will hold.
Before a solution is found for this defined game, at least
one LP for each subgroup must be solved. One LP for each (excess
+ a small value) in the second subgroup must also be solved.

Therefore, the total number of LP's that must be solved is

20"l ny 3.
Proof:
Subgroup Number of IP's to be solved
I 1
II K-player coalitions with n-1 and n
Total - grandcoalition - (n-1,n)
2n2 - 1 - 1

K-player coalitions without n-1 and n
Total - singletons - empty set
2N=2 - (n-2) - 1

Total this subgroup: 2071 - n - 1

IIT 1

Total number of LP's to be solved = 2071 - n + 1
This is the upper bound as only in the worst case would it be
necessary to solve 1 LP for every coalition in subgroup II before
the solution is found.

Number of pivots that must be performed = No worse than 2 raised
to the n2 power.

2n
It is actually (n) which, using Sterling's formula, is found to
be less than 2 raised to the n?. It is known that general LP's
are exponential; it is not known whether the special structure of

this class of LP's improves the bound.

Page 31

Number of calculations within each pivot = 0o(n2D)

Step 1 first number n * number of numbers n => n*n = n2.
Step 2 n_* 2 => o(n20)

Step 3 n?

Step 4 n?

Step 5 n3

The number of calculations within each pivot is at least o (n21),

Page 32
COMPUTATIONAL COMPLEXITY:

The computational complexity was determined using random
games. These games were generated in the following manner:
V(i) = 0, V(N) = 1 and all other values are determined using a

uniform distribution on (0,1). Ten examples were generated for

each number of players.

Number of ILP's Solved

Number of players Average High Low S.D.
3 2.8 3 2 .8944
4 3.8 5 2 1.3663
5 3.6 5 2 1.4491
7 4.2 6 2 1.8038
9 4.6 10 2 2.7019

On average, increases linearly or near linearly.

Number of Pivots Performed

Number of players Average High Low S.«Ds
3 4.4 6 3 1.7889
4 17.2 24 o 9.5149
5 26.1 37 16 11.1232
7 79.3 123 43 28.9485
9 171.6 195 134 17.3000

On average, increases exponentially.

CPU Time (in minutes)

Number of players Average High Low S.D.
3 .12 .20 .10 .0894
4 .73 1.00 .40 .3834
5 1.91 2.70 1.20 .8272
7 17.42 25.80 10.00 5.8628
9 143.02 179.10 122.90 19.6779

On average, increases close to an order of magnitude.
Note that experimentally, the number of LP's to be solved
is, on average increasing linearly or near linearly while
theoretically, it is shown to increase at least exponentially.
The experimental data for the number of pivots shows that the

number increases exponentially which shows that the special

Page 33

structure of this class of LP's does not improve the bound. Finally,
the CPU time which is a product of the three theoretical values is
exponential. This picks up on the exponential number of LP's, pivots

and calculations within each pivot determined theoretically.

Page 34

SOLVING FOR THE NUCLEOLUS USING THE RECURSIVE ALGORITHM
Description of the method:
Definitions:
Efficient- An allocation method is efficient if all possible

value is allocated, = ej(N,v) = v(N).
jeN

Symmetric- An allocation method is symmetric if for all
permutations m of N and for all players i € N, it follows that
e”(i){N,nv) = 6 (N,v) where 7nv is the value function defined by
v(S) = v(S) for all S<N.

Covariant- An allocation method is covariant if for any @ = 0 and
b € R, it follows that ©(N,u) = 8;(N,v) + b where u is defined

by u(s) = ev(s) + Tb; for all SSN.

ieS
Sobolev Consistent- An allocation method is Sobolev consistent if
ei(N'VT'e(N,v)) for all i € T and T N, where (T,VT,X) is the

reduced game by VT,X(T) = Ixj, and VT,X(S) = max {V(SUR) - 3Zx;)}
ier REN-T

for Sc. T.

The recursive algorithm is based upon Sobolev's theorem
which states that the Nucleolus is the unique allocation method
that is efficient, symmetric, covariant and consistent. Stearns
shows that reducing a given game to 2-player games and
calculating the nucleolus on each 2-player game will converge to
a point in the kernel but not necessarily at the nucleolus. This
approach is attractive computationally because the nucleolus for
a two person game is easily computed:

Xj(N,v) = v(i) + %[v(12) - v(1) - v(2)] for i = 1,2.

Page 35

The recursive algorithm conjecture is that if the nucleolus is
calculated on all subsets of a game (ie 3 or 4-player games) we
will converge to a smaller subset of the kernel than Stearns

or to the nucleolus.

Page 36

ILLUSTRATION OF STEARNS METHOD BY EXAMPLE:

Consider Shubik's example

v(i) =0

v(1l2) = v(34) = 0 otherwise, v(ij) =
v(ijk) = 2

V(N) = 4

2

The nucleolus is (1,1,1,1) the kernel is {(t,t,2-t,2-t)

Execute Stearns method:
Choose x = (2,0,1.5,.5)
coalition (12}

1. v(l2) = 2 for the next x,
v(l) = 1.5 X1=X5= 1.5 + %[2-1.5-1.5]
v(2) = 1.5

x = (1,1,1.5,.5)
coalition (34)

2. v(34) = 2
v(3) =1 for the next x,
v(4) =1 X3=X4= 1 + %[2-1-1] =1
3. x = (1,1,1,1) we found the nucleolus.

=1

1t=[0,2])

However, Stearns method doesn't always converge to the

nucleolus. The coalitions were chosen in this example in the

"right" order so the nucleolus was found. If, in step 2, the

coalition {23} were chosen, the following would have occured:

x = (1,1,1.5,.5)

2. coalition {23}
v(23) = 2.5 for the next x,
v(2) = 1.5 X9 = 1.5 + %[2.5-1.5-1] = 1.5
v(3) =1 X3 =1 + %[2.5-1.5-1] = 1
x = (1,1.5,1,.5)
i 8 coalition (12}
v(12) = 2.5
v(l) = 1.5 for the next x,
v(2) = 1.5 X1=X5= 1.5 + %[2.5-1.5-1.5] =
X = (1.25,1.25,1,.5)
4, coalition (34)
v(34) = 1.5
v(3) = .75 for the next x,
v(4) = .75 X3=X4= .75 + %[1.5-.75-.75] =
5. Xx = (1.25,1.25,.75,.75)

.75

This is a point in the kernel. The values of x won't
change by considering any other two player coalition so we

stop.

can

Page 37
EXPLANATION OF WHY THE METHOD WON'T WORK:
Again, consider Shubik's example:

Choose x = (2,0,1.5,.5)
1. coalition {234}

v(234)
v(23)
v(24)
v(34)
v(2)
v(3)

S v(4)

I | T
coocoMNMNN

2. x = (2,2,0,0)

This is a point in the kernel. The values of x won't
change by considering any other three player coalition so we
can stop.
the that we haven't reached the nucleolus using 3-player

coalitions and we haven't reached a much better solution while
the difficulty of calculating the nucleolus has increased. If 4-
player coalitions were used, calculating the nucleolus would be
even more difficult. We could break the coalition into two 2-
player coalitions or use the linear programming method to
calculate the nucleolus on the reduced game, but both defeat the

purpose. Therefore, calculating the nucleolus on all subsets of

a coalition will not, in all cases, yield a better approach.

Page 38

RESULTS AND QUESTIONS FOR FURTHER STUDY

The pascal implementation has made calculating the nucleolus
on n-player games very quick and relatively effortless for nine
or less players. Perhaps it would be possible to rework the
program to consider larger games. However, due to limits on
number size in pascal, this may not be possible.

The experimental data for the number of LP's that must be
solved indicates a linear or near linear increase. This leads
one to conjecture that a "better" upper bound might be found if
the question were looked into further. The theoretical upper

bound determined in this paper is exponential.

Page 39

REFERENCES

Vasek Chvatal, Linear Programming. W.H. Freeman and Company, New
York, 1983.

James Endersby, "Toward Efficiency in Linear Programming". From the
Journal of Undergraduate Mathematics, March 1983, Volume 15, No. 1.

David Housman and Lori Jew, "Cooperative Game Theory: An

introduction", Worcester Polytechnic Institute, Worcester,
Massachusetts, 1989.

Guillermo Owen, Game Theory, 2nd ed. Acadenmic Press, Inc., New
York, 1982.

H. Peyton Young, "Cost Allocation", Proceedings of Synposia in
Applied Mathematics, Volume 33, 1985.

