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Introduction

Many mathematicians are realizing the usefulness of cooperative game
theory in the process of allocating costs or benefits among the participants
of joint endeavors. Realizing that in reality, the determination of all
coalitional worths may be prohibitively expensive or impractical, this paper
is aimed at providing possible allocation methods for games which have unknown
coalitional worths.
Definitions

In this paper, all games in which some coalitional worths are not known
are referred to as partially defined games, or PDG’s. Each game consists of a
set of players, N, with N = {1, 2, ..., n}. Let M be a subset of N such that
1, n € M. A partially defined game with respect to M, or an M-game, is a real
valued function @ on {S < N: |S| € M}. The real number &(S) is often called
the worth of the coalition S. By defining M so that it always contains 1 and
n, we insure that the worth of the singleton and grand coalitions are known,
in addition to the worths of any other coalition whose size is in the set M.

An allocation for the M-game is a vector of payoffs x € R". An
allocation method is a function from a class of games to allocations R" which

attempts to fairly distribute the costs or benefits of the joint venture. The



Shapley value ¢ is an allocation on N-games defined by the formula
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where s=|S| and n=|N|. This formula tells us that the Shapley value to player
i in game w is player i’s average marginal contribution over all possible
orderings of players. An equivalent formula obtained through algebraic

manipulation is

¢;(w) =%E|s|elv [Elsl-s,ies( g:i )_1‘“‘ (8) _E|S|=s,i€5( n;l )_1“’ (8)]

This form implies that player i should obtain an average over coalition sizes
of the average worth of coalitions containing i minus the average worth of
those not containing i. This becomes relevant when studying certain classes
of M-games.

When dealing with a PDG, the unknown worths of coalitions can be
estimated based on the class of game being considered. If Q is a class of N-
games, then the N-game & is called a Q-extension of the M-game o if é € Q and
6(S)=a(S) for all |S| € M. In this paper, the set of all Q-extensions of @
will be denoted ext(w). Once the set of all Q-extensions has been
characterized it becomes possible to find a central Q-extension of the M-game
@. Assuming a uniform probability distribution of the extensions, this paper
examines the use of two different central extensions. First, the geometric
center, denoted by centroid ext(e) = C, is used as a reasonable estimate of
the underlying N-game. Second, the coordinate center of the ext(w) is used as
another means of approximating the central extension of the M-game. The
central N-game, defined by either the centroid or the coordinate center, then

becomes a sensible extension on which to apply the Shapley value.



The zero-normalization of an M-game e is the M-game w defined by w(S) =
o(S) - L. ({i}) for all |S| € M. This forces the worth of all the singleton
coalitions to be equal to zero, without significantly changing the M-game.
The zero-normalized extension w produces a shift in the worths of ext(w) by
the sum of the worths of the singleton coalitions. If the class of games is
closed with respect to these singleton shifts (i.e. @ € @ and b € R" then etb
€ O where (et+b)(S)=e(S)+Y, b, for all ScN), then the zero-normalization of the
extensions of an M-game e are the extensions of w, the zero-normalization of
@. In such cases, it follows that ¢.(e) = w({i}) + ¢;(w). AIl classes of
games treated in this paper are closed with respect to singleton shifts;
therefore, this paper will only consider M-games in which the worths of all
singleton coalitions are equal to zero, since any given game can be zero-
normalized and the final allocation adjusted accordingly.

This paper examines allocations for three classes of games. The N-game
@ (defined by ext(e) in an M-game) is

(1)size zero-monotonic if w(S) - ¥. .e({i}) < &(T)- %, 0({i})
for all S,T < N satisfying |S| < |T|;

(2)zero-monotonic if &(S) + @({i}) < &(S v {i}) for all SN
and i € N-S;

(3)superadditive if @(S) + o(T) < &(S u T) for all S, T <N
satisfying Sn T = .

Note that superadditive games and size zero-monotonic games are both zero-
monotonic games as well.
The Shapley value on size zero-monotonic M-games

Since we know that the worths of all the singleton coalitions are zero,
the definition of a size zero-monotonic N-game @ can be stated as &(S) < &(T)

for all S, T < N satisfying |S| < |T|. This indicates that the M-game is size



zero-monotonic if every 2-player coalition is less than or equal to every 3-
player coalition which is less than or equal to every 4-player coalition, and
so on, up to the grand coalition. The set of size zero-monotonic extensions
of an M-game is defined by ext(w) = {6:6(S)=e(S) if |S|eM, max{&(T):|T|=|S|-1}
< 6(S) < min{a(T):|T|=|S|+1} if|S|eM)}.

To determine the centroid of ext(w), look at the &(S) when |S|eM. The
value assigned to &(S) depends solely on the cardinality of S, with no means
of differentiation based on the composition of the coalition. In other words,
the range of &(S) for each S with the same number of players (regardless of
which players are in the coalition) Tooks exactly the same. Looking at a
cross section of the object created when |S|=s, with all other &(S) fixed, a
box is formed in multidimensional space. The centroid of this object must
then have the same value for each o(S) within a cardinality. So, the C(S) is
the same within each cardinality where |S| ¢ M.

Taking the Shapley value of the centroid of the size zero-monotonic
extension of the M-game, denoted by @, provides us with an easily generalized
allocation method. In this extension, the Shapley value of the centroid
extension is equivalent to taking the Shapley value of the partially defined
game with respect to M by simply ignoring the worths of the coalitions whose

size is not in M, since

8;(C) =¢;(w) =%E|s|EN [Elsl-s.ieS( g:i )—10(3) “Elsl-s,ies( n;l )_1C(S) ]

This is obtained from the formula stated earlier for N-games in which the
first summation was over |S| € N, rather than M. Looking at the term in

brackets for |S|=s & M, we know that the C(S) is the same whether or not i is



(52) g
in S. Since the first sum has \ -1/ terms and the second sum has s

terms, the expression in brackets reduces to
f=1y\ a-1\7" -1\ B-1\t o
(S_l s—l) C(9) ( S)( s) C(8) =0.
So, when |S| ¢ M, the term in brackets will always equal zero and can,
therefore, be ignored. When |S| € M, the worth of the centroid extension is
equal to the worth of the original M-game (C(S) = @(S)). So the allocation

for a size zero-monotonic M-game is:

¢;(w) =%E|S|EM [EIS|-s,ies< g:i )_1‘“’ (8) 'Elsl-s,ie.s( n;l )_1(0 (31

In a different notational form, Wilson refers to the above formula as the
reduced Shapley value [Wilson, 1991].
The Shapley value on zero-monotonic M-games

Since we assume that the M-game @ is already zero-normalized, the
definition of a zero-monotonic game & can be simplified to &(S) < @(T) for all
S cT e N. Like the size zero-monotonic extension, this insures that adding a
player to a coalition does not Tessen the worth of the original coalition.
But, unlike the size zero-monotonic extension, the zero-monotonic extension
allows for the possibility that a 3 player coalition could be less than some 2
player coalition. The set of zero-monotonic extensions is defined by ext(e) =
{6:6(S)=(S) if |S|eM, max{6(T): T<S} < &(S) < min{&(T): TaS) if |S|eM).
Finding the centroid extension on this class of games is not a simple matter.
In cases where two or more successive coalitional sizes are absent from M, the
6(S) can be difficult to determine and even harder to generalize for the n

case. I was able to find results for some of the simpler cases. For 4-player

5



zero-monotonic games where M = {1,2,4}, the shapley value of the centroid

ext(e) is

0,(C) =, (@) =2 % [Biges, zc s( 2 )-1,,, 05) “Epine v s( = )-10, (5) ]

+%EISIEM % [E|S|,s’i€s( gj )_lmax{w (73 : TQS}"E|S|-5,1¢5( n;ll)_imax{o) (T) : TeSH]

For 4-player zero-monotonic games where M = {1,3,4}, the shapley value of the

centroid ext(e) is

8,(C) =0, (0) ==X oy Wistee,sed 59 )‘1w (8) Eigi, e 75" )’1w (9]

-1\1 . e
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If there were some generalized means of finding the centroid of the object
defined by ext(e), then possibly the shapley value could be generalized to
some simple formula, but I was unable to discover such a method.
The Shapley value on superadditive M-games

The superadditive extensions of the M-game @, where @(SuT) > &(S) + w(T)
for all disjoint S,T ¢ N, is difficult to characterize. In the 4-player game
where M={1,3,4}, the set of superadditive extensions look 1like the zero-
monotonic extensions with the added constraints: (12) +e(34) < w(1234),
o(13) + 0(24) < ©(1234), and &(14) + 0(23) < @(1234). To facilitate notation,
when looking at the known coalitional worths for |S| = 3, order the worths so
that @(123) > ©(124) > @(134) > @(234). In superadditive games, the
extensions take on different shapes (and therefore, different centroid values)
depending on the worths of the known coalitions. In the first case, if

©(1234) > o(124) + @(234), the superadditive extensions become equivalent to



the zero-monotonic extensions. The centroid ext(e) and the corresponding
shapley value are found as in the previous section. In the second and third
cases the ©(1234) < o(124) + 0(234) and either ©(1234) > w(134) + @(234) or
®(1234) < @(134) + ©(234). In both cases the centroid does not generalize
easily. While I did find the centroid ext(e) of this particular game, I was
not able to see a generalized formula for either the centroid ext(w) or the
shapley value of the centroid ext(e) [Appendix A,B].

Summary of centroid ext(e)

For any particular M-game @, the class of games chosen to define the
extension & determines the resulting allocation, ﬁi(é). To illustrate the
differences of the preceding results, below is a table comparing the size
zero-monotonic, zero-monotonic, and superadditive extensions and their shapley
values for the game o where: (1234) = 240; (123) = 200; w(124) = 180;
(134) = 160; w(234) = 120; and (i) = 0 for i € {1,2,3,4).

size zero-
zero-monotonic monotonic superadditive
6(12) 60 90 83.6364
6(13) 60 80 77.1014
6(14) 60 80 77.1014
6(23) 60 60 57.9710
6(24) 60 60 57.9710
6(34) 60 60 56.3636
¢, (6 15 80.83 80.4611
0,(6) 61.67 60.83 60.7510
¢ (o) 55 52.5 52.7273
A 48.33 45.83 46.0606

An Alternative to the centroid extension
Since the centroid appears to be a difficult extension to find in the
zero-monotonic class of games as n gets large, let’s look at a simpler central

point. Define x such that x is a coordinate center of the convex set C if x;



is the midpoint of {x + A&, : A € R} n C for all i. It can be shown that in
the zero-monotonic extension of the M-game @, there exists a unique coordinate
center [Housman, appendix C]. Let c be the coordinate center of ext(w), then
¢ = {C: ¢(S) = w(S) if |S| e M, ¢(S) = (1/2)[max{ c(R) : RcS} + min{ c(T) :
ScT}] if |S|eM}.

At this point it becomes useful to narrow the type of game with which we
are working. Oftentimes, the worths of the coalitions other than the grand
coalition and the coalition minus one member are not available. Considering
M-games of this nature, where M ={(1, n-1, n}, has many real-life applications
in the cost allocation of joint ventures. So, an M-game @ where M = {1, n-1,
n}, can be ordered for notational purposes so that o(N - {i}) = a; and a, < a,
< ...<a <a; =e(N). Inthis case, the coordinate center, c, can be

simplified to: ¢ = {C: c(S) = w(S) if |S| € M,

; 571 minfa,: 168 if 8+(1,2,...,8, |S|eM,
c(s) = n=2 &(s) =

= K _a,., if s=1,2,...,8, |s|ex

n-2 o }. In this form, generalizing the

shapley value on this game is likely to simplify. If so, this would provide a
much more efficient means of calculating an allocation using the shapley value
then determining all possible coalitional worths first. Due to a lack of
time, I am unable to say for certain if this is the case.
Conclusion

Although many of the results submitted in this paper are only preliminar
y findings which may not yet be fully developed, I believe that there is merit

in the procedure put forth. Defining a set of extensions based on a class of



games, using this to determine a central extension, and then applying the
Shapley formula to these values will, at least in some specific cases, lead to
a simple allocation formula based on only the known coalitional worths of the
partially defined game with respect to M. The allocation determined in the
size zero-monotonic class of M-games is the most conclusive, and may be
applicable in many reality based problems, but it must be noted that it also

imposes some severe restrictions on the game.
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w)((}(@} APPEND I X A

2 2 2 3
1/3(3a e-3a min(a-c,e)-3ae +3amn(a-c,e) +e

3 2
- min(a - ¢, e) +3 c min(a - ¢, e))

/ 2 2
/] (2ea-2amin(a-c, e) -e +min(a-c, e) +2cmin(a - c, e))

/ggﬁggﬂvﬂ ; e

1/3(3a e-3a min(a-d,e) -3ae +3amin(a-d, e) +e
; 3 2
| - min(a - d, e) +3d min(a - d, e))
= 2 )

/ (2dmin(a-d, e)+2ea-e -2min(a-d, e) a+min(a-d, e))

/
L_> xx3; U)(\BBL W(qu
2 2 2 2 3

1/3((3a e-3a min(a-d,e)-3ae +3amin(a-d, e) +e

3 2
- min(a - d, e) +3d min(a - d, e))

/ 2 2
/ (2dmin(a-d, e)+2ea-e -2min(a-d, e) a+ min(a-d, e))
/
o W(@3) = W(34)
2 3 2 3 2
3dmin(a-d,e) -2e +3ae +2min(a-d, e) -3 amin(a - d, e)
R e e Ce s o e S g e S Do T SO e a e SO O C e
2 2

2dmin(a-d,e) +2ea-e -2min(a -d, e) a+ min(a - d, e)

s wioy)= uz,o(Q 333

2 3 2
3dmin(a-d,e) -2e +3ae +2min(a-d, e) -3 amin(a -d, e)
/8 = e S e s S S e e e e e e SR R S S e S s SR s s e e s
2 2
2dmin(a -d, e) +2ea-e -2min(a-d, e) a+ min(a - d, e)
> xx6; (\BLD
3 2 3
3ae -3amin(a-c,e) -2e +3cmin(a-c, e) +2min(a - c, e)
/B =r-cissmch s ain s s inisim ~Ciin e = mie e S Sk S G s S s s s m e s G s s S e
2 2
2ea-2amin(a-c, e) -e +min(a-c, e) +2cmin(a - ¢, e)
2
> : o 2
> ; Cagp L o
> simplffy(subs(min(a-c,e)=e,min(a-d,e)=e,xx1); a 725

syntax error:
simplify(subs(min(a-c,e)=e,min(a-d,e)=e, xx1);
g W(\&)
> simplify(subs(min(a-c,e)=e,min(a-d,e)=e,xx1));

1/2 c 1 f
lol13) =W

> simplify(subs(min(a-c,e)=e,min(a-d,e)=e,xx2));
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} o 4.
2 3 2 2 3 3 a d
3a e+a +3ae 3ac e +2¢ ;
e = w(12)
2 2 2
2ea+a 2ac+e +c
> sx2; .
)(Z 2 3 2 2 3 3
X -3a e+a +3ae -3ad -e +2d i t)
xx 3 (8 i O R e o (e £ (p([%) — v (4
2 2 2
-2ad+d -2ea+e +a
> sxb;
4 2 2 3 3 2 3
XX -3a d+3ad -d +2e -3ae +a b )
s i N S = w(;@),w(o?‘{
2 2 2
-2ad+d -2ea+e +a
> sx6;
2 3 2 2 3 3
3ae +a -3a c+3ac +2e c
/3 - = (,>(3<+>
2 2 2
-2ea+a -2ac+e +c
> sxB;= simplify(subs(min(a-c,e)=(a-c),min(a-d,e)=(a-d),xxé)) ;4
% e —_—
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shapley values;
syntax error:
shapley values;

MORE> ; CC(SQ_IE ]
2 2

> sh1;

Shapley Valuas
2 2
1/12 (- 7ac d +5ae d +9a c2 e2 +6b e2 a2 -2b a3 c+3 as -6 e5 ( 6171_((})\j~)

3 2 2 3 2 2 3 2 2
+12ea d+2ea d +2a cd+8a cd +16a ce-19a ce

2 2 2 2 2 2 3 3 2 2
-1% e a d+5c a d-3c ea +6ace +4e ad-3ec d

3 3 2 2 2 4
-6ead -6acd -4ea cd+beacd +bec ad+27ae

2 3 3 2 4 4 3 2 4 2 3
+42e a -48e a -18ea -3a d-3a d -4a c-c a

3 2 2 3 4 2 3 2 3 2 3 3 2
-4e d -5c e +de +3a d +3e d +3c d +2c d

3 2 3 2 4 4 4 2 2 2 3
+2c e +2c a +ce +ba +be -4dace +dc e -4c ad

3 2 2 3 3 3 2 2 2 2
-4c ea+ce d -4be a-4bea -2ba d+ba d +be d

2 2 2 2 2
+4bea d-2bead +4ba cd-2bacd +4ba ce

2 2 2 2 2 2 2 2
-2bace -2be ad-2bc ad-2bc ea+bc d +bc e

+bc a)
/ 2 2 2 2 2 2

/ ((-2ea+a -2ac+e +c)(-2ad+d -2eat+te +a))
/

> sh2;
2 2 2 2 2 2 2 2 3 5 5 ('<ié7§L ( (}';\S:>
/12 (9ac d +13ae d -7ac e +6be a -2ba c+3a +2e

3 2 2 3 2 2 2 2
28ea d-26ea d +18a cd-2ta cd +13a ce

+

2 2 2 2 2 2 3 3 2 2
26e a d-3c a d+5¢c ea -10ace +12e ad+ec d

3 3 2 2 2 4
Mead +10acd -4ea cd-4eacd +4ec ad-5ace

+

2 3 4 4 3 2 4 2 3 2 3
+10e a -10ea -1Ma d+13a d -4a c-c a +3c e

4 2 3 2 3 2 3 3 2 3 2 3 2
-3de -5S5a d -5e d -5¢c d +2c d +2c e +2c a

4 4 4 2 2012 3 3
+ce +ba +be +4dace -3dc e -4c ad-4c ea,

2 2 3 3 3 2 2 2 2



3 =%
+cead3-4besa-4bea3-2ba d+ba d9+be9da

2 2 2 2 2
+4bea d-2bead +4ba cd-2bacd +4ba ce

2 2 2 2 2 2 2 2
-2bace -2be ad-2bc ad-2bc ea+bc d +bc e

2 2
+bc a)
/ 2 2 2 2 2 2
/] ((-2ad+d -2ea+e +a)(-2ea+ta -2ac+e +c))
: )
> sh3; =2 ec("") ((/gz) ((/D>
2 2 3 3 2 3 2

112 (-2bea+bcea-4ba e-ae +2e¢ -4c +c e+3a -1a c

2 2 2 2 2 2 2 2
+11ac +a d+be +bc -3ce +e d+c d+ba -2bac

/ 2 2 2
-2dea-2dac) / (-2ea+a -2ac+e +cC)
/

> shé;>» B () 3 2 3 2 3 2 2 ( LdLI (ww )

112 (6bea-4cea-4a e-ae +2e +cC e+3a -6a c+3ac

2 2 2 2 2 2 2
+a d-3be -3bc +ce +e d+c d-3ba +6bac-2dea

/ 2 2 2
-2dac) / (-2ea+a -2ac+e *+cC)
/



4 APPEND)X 1B (cont)

> sxb:=simplify(subs(min(a-c,e)=(a-c),min(a-d,e)=e,xx6)):
> shi; Cl?
f w
1(w) 2 2 3 3
172 (-2bea+6cea-11a e+13ae -5e +2c

2 2 2 2 2 2 2
-4a c-ac t2a d+be +bc +ce +2e d

/ 2
-2bac-4dea-4dac) / (-2eata -2a
/

5 o, c@z(w)
2 2 3 3 2
1/12 (-2 bea-6cea-5a e+ae +e +2c +2c¢c

2 2 2 2 2 2 2

c

e

+3a -4a c

2

-ac -4a d+be +bc +ce -4e d-4c d+ba -2bac

/ 2 2 2
+8dea+8dac) / (-2ea+a -2ac+e +c¢
/

> sh3; &3 ({)))

2 2 3 3 2

)

3 2

1/12 (-2bea+4cea-4a e-ae +2e -b4c +c e+3a -10a c

2 2 2 2 2 2 2

+1ac +a d+be +bc -3ce +e d+c d+ba

/ 2 2 2
-2dea-2dac) / (-2ea+a -2ac+e +c)
/

> shé4; Caq(W)
2 3 2 3

2
-2bac

2 2

1/12(bbea-4cea-4a e-ae +2e +c e+3a -6ba c+3ac

2 2 2 2 2 2 2

+a d-3be -3bc +ce +e d+c d-3ba +6bac

/ 2 2 2
-2dac) / (-2ea+a -2ac+e +c)
/
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