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Abstract

United States legislation requires approval by the President and simple majorities of the Representa-
tives and of the Senators, or approval by two-thirds majorities of the Representatives and of the Senators.
Four well-known power indices assign the President between 4% and 77% of the a priori voting power in
this simple game. Given this wide range of answers and a variety of power index paradoxes cited in the
literature, it is important to clearly define what properties a power index should satisfy. The goal of this
work is to characterize all power indices satisfying the normalization, symmetric, dummy independence, and
monotonicity properties.

1. Introduction

In the United States government, legislation either requires approval by the President and simple majorities
of the Representatives and of the Senators or approval by two-thirds majorities of the Representatives and
of the Senators. This is an example of a simple voting game: there are voters and winning coalitions (groups
of voters that can pass a resolution). There are three characteristics that every simple voting game must
have. First, all voters together must form a winning coalition. Second, if a subset of a group of voters is
a wining coalition, then the group of voters is also a winning coalition. For example, in a game consisting
of 4 players if voters A and B form a winning coalition, then voters A, B, and C must also form a winning
coalition. Lastly, in simple voting games, there can’t be two disjoint coalitions that could win at the same
time. For example, in a game consisting of 4 players if voters A and B form a winning coalition, then voters
C and D can’t form a winning coalition because in this case, they would both be able to win at the same
time. It doesn’t make sense in real life so it is not allowed to happen.

There are several different types of games. A dictatorship is when one player has all the power because
he forms a winning coalition by himself. In this game, no other players need to approve for the resolution to
be passed. Another game is when all the players are part of the same number of winning coalitions, so they
have equal power. Then there are the games that are in between these two games.

From these simple voting games, the voting power of each voter can be calculated. Different methods of
calculating voting power of each voter have been created. These different methods are called power indices.
The four most popular power indices are the Banzhaf, Deegan-Packel, Shapley-Shubik, and Johnston power
indices. When looking at United States legislation, the President is assigned 4%, 4%, 16%, and 77% of the
power respectively. This is a large range of power ascribed to the President. Arguments exist about which
of these power indices is the most correct and the best for calculating voting power in simple voting games.
Voting power can be considered the likelihood of having a significant role in determing the outcome of a
vote.

Certain reasonable properties exist that can be used to help argue which power index is the best for
calculating voting power in simple voting games [2]. First, the voting powers of all the players should add
up to one. The power index can then be interpreted as the fraction of voting power that a voter has, which
helps when comparing a voter’s power between different games. Next if the voters in a game are relabeled
then the powers of those voters should also be relabeled. This means that if voter A is relabeled as voter B,
voter B is relabeled as voter C, and voter C is relabeled as voter A, then the new voter A has the amount of
voting power that voter C had originally, the new voter B has the amount of voting power that voter A had
originally, and the new voter C has the voting power that voter B originally had. Third, if a player can never
change a winning coalition to a losing coalition by removing himself from the coalition or change a losing
coalition to a winning coalition by adding himself to a coalition, then he does not have any voting power at
all. Since that player can never change any of the winning coalitions, then essentially his vote doesn’t matter.



A fourth reasonable property shows up when two games are compared. If the only difference between two
games is that the first game has a winning coalition that is not present in the second game, then the voters
in the additional winning coalition in the first game should have more power in the first game than they do
in the second game. Not all of the aforementioned power indices follow all of these properties. In fact only
the Shapley-Shubik index follows all the properties mentioned. The other three power indices violate the
last property. The goal of this study is to find all the power indices that follow these properties. This would
be a first step to finding the best way to calculate voting power in simple voting games.

2. The Problem

The problem addressed in this paper is how to characterize all power indices, for simple voting games, that
follow the properties of normalization, symmetry, dummy, dummy independence, and monotonicity. For our
purposes, voting power of a player is a measurement of that player having a significant role in determining
the outcome of a vote. First, the definition of simple voting games used in this study must be defined.

Definition 1 A simple voting game is a set of players N and a set of winning coalitions W satisfying
1. Ne W,
2.0¢ W,
3. if SeW and S CT thenT € W, and
4. if SeW and T € W then SNT # (.

The following example will help to clarify what a simple voting game is. M = [t;p1, P2, P3, ..., Pn] is the
notation used in a weighted voting game. Weighted voting games are a subset of simple voting games. In
weighted voting games, each voter is assigned a weight for which their vote is worth. For example, if player
A is assigned a weight of 5, her vote counts as 5 votes instead of 1. These assigned weights may be because
each voter is representing a different number of people. In the notation given, the game M has n players (or
voters) with weights of p1, p2, p3, ..., and p,. A minimum of ¢ votes is needed for a group of voters to form a
winning coalition.

Example 2 M = [8;5,3,1,1,1]
This game has 5 voters whom I will call A, B, C, D, and E. Because at least 8 votes are needed to form
a winning coalition, the only possible winning coalitions are

ABCDE ABCD ABCE ABDE ABC ABD ABE AB ACDE

From these winning coalitions, we want to find the voting power that each voter has. There are different
methods of calculating this voting power which are called voting power indices. A power index assigns a
power to each voter.

Definition 3 A power index is a function that associates with each simple voting game (N, W) and voter
i € N a number K; (N,W).

The two power indices that I looked at during my research were the Banzhaf and the Shapley-Shubik
which are named after the persons who created them. Both of these power indices look at which players are
critical. A player is critical when he is able to change a winning coalition to a losing coalition by removing
himself from the coalition or when he is able to change a losing coalition to a winning coalition by adding
himself to the coalition. The Banzhaf power index looks at all the critical voters in each winning coalition,
adds up the number of winning coalitions that each voter is critical in, and then divides that number by the
total for all the voters. The critical voters in the above example are underlined below:

ABCDE ABCD ABCE ABDE ABC ABD ABE AB ACDE

Voter A is critical in all the winning coalitions so she has a voting power of 1%. Voter B is critical in 7 out of
the 9 winning coalitions so he has a voting power of %. Voter C,D,and E all were critical in only 1 winning
coalition so they each have a voting power of %9.



The Shapley-Shubik power index looks at all the different orders that the voters can be arranged in and
finds the one player that makes the coalition a winning coalition in each of the different orderings. Then
the number of times a player is critical is added up and divided by the total number orderings to calculate
the voting power of each voter. In the above example, there are a total of 120 possible orderings of the 5
voters. Voter A is critical in 66 of the 120 orderings so she has a voting power of %, voter B is critical in
36 of the 120 orderings so he has a voting power of %, and voters C, D, and E were each critical in 6 of
the 120 orderings so they each have a voting power of 55. By looking at these powers calculated from both
the Banzhaf power index and the Shapley-Shubik power index, you can see that different power indices can
produce different values for the voting power of each voter. This can raise the question of which power index
is the best for calculating voting power.

There are certain properties that make logical sense that any power index should follow. These properties
are normalization, symmetry, dummy, dummy independence, and monotonicity. The first property gives a
relative voting power for each voter by making all the individual powers add up to 1. This is so it can be
used when making comparisons both with the other voters in the same game and with the same voter in

different games.

Definition 4 (Normalization) If (N,W) is a simple voting game, then ZK}- (N, W) =1.
i=1

Renaming the voters in a simple voting game should not change their powers. We can formalize renaming
with a permutation. A permutation w is a one-to-one mapping of N onto N. For example, let N =
{A,B,C,D,E} and w(A) = B, n(B) = C, n(C) = D, n(D) = E, and n(E) = A. Let (N,W) be any
simple voting game and 7 a permutation of N. We denote the corresponding renaming of a coalition
S by w(S) = {n(i) : i € S}. We denote the corresponding renaming of the winning coalitions W by
7(W) = {n(S) : S € W}. Using the example above with the simple voting game M and the permutations
specified previously, #(W) = {{ABCDE},{BCDE},{BCDA},{BCEA},{BCD},{BCE},{BCA},{BC},
{BDEA}}. The second property renames the voting power of each voter when the voters are renamed.

Definition 5 (Symmetry) If (N, W) is a simple voting game and 7 is a permutation of N, then K;(W) =
Koy (m(W)) for every voteri € N.

A voter who can never change a losing coalition to a winning coalition is considered a dummy. That
is, voter i € N is a dummy in the simple voting game (N, W) if S € W if and only if S\ {i} € W for all
coalitions S C N.

Dummy voters play a special role in simple voting games. First, since dummy voters can’t affect the
outcome of any vote, then they should not have any voting power.

Definition 6 (Dummy) If (N,W) is a simple voting game and voter i is a dummy, then K;(N,W) = 0.

Second, because a dummy does not affect the outcome of any vote, the same amount of voting power
should be assigned to the other voters if the dummy is excluded from the simple voting game.

Definition 7 (Dummy Independence) If (N',W') is a simple voting game obtained by excluding a dummy
from a simple voting game (N, W), then K;(N',W') = K;(N,W) for every voteri € N'.

The last property increases the voting power of voters when they are part of more winning coalitions and
decreased the voting power of voters when they are part of less winning coalitions.

Definition 8 (Monotonicity) If (N,W) and (N',W') are simple voting games such that W =W U {S}
then K;(N',W') > K;(N,W) for every voter i € S and K;(N',W') < K;(N,W) for every voter i € N\S.

All of these properties are reasonable in any simple voting game. The Banzhaf power index and the
Shapley-Shubik power index both follow the first four properties: normalization, symmetry, dummy, and
dummy independence. This can be illustrated for the first two properties using the above example. The sum
of the voting powers of each voter add up to 1 in the first example using each power index. Thus, both the
Banzhaf and Shapley-Shubik power indices satisfy normalization. Also in the first example, renaming voters
C, D, and E doesn’t change any of the winning coalitions, therefore the voting powers of these voters must
be the same. This is also seen when voting power is calculated by both the Banzhaf and Shapley-Shubik
power indices as shown above so they also satisfy symmetry. Because the above example does not illustrate
the dummy and dummy independence properties, here is an example that exhibits these.



Example 9 N = [8;4,4,1,1,1]

This game is similar to the first example except that voter A’s vote now counts as 4 votes instead of 5
and voter B’s vote now counts as 4 votes instead of 3. From the information given, we know that these are
the only possible winning coalitions (with the critical voters underlined):

ABCDE ABCD ABCE ABDE ABC ABD ABE AB

Using the Banzhaf power index to calculate voting power, voters A and B each have a voting power of %
while voters C, D, and E each have a voting power of 0. Using the Shapley-Shubik power index to calculate
voting power, voters A and B each have a voting power of 16700 or % while voters C, D, and E each have a
voting power of 0. By looking at the winning coalitions, we see that C, D, and E are dummy player, so they
must all have a voting power of 0. Both the Banzhaf and Shapley-Shubik power indices calculate their power
to be 0 so they satisfy the dummy property.

The last property to consider is the monotonicity property. This property is shown when comparing
the two examples above. The difference in those two games is that game M has one additional winning
coalition than game N: ACDE. According to monotonicity, the voters in the additional winning coalition,
ACDE, should have more voting power in M than they do in NV, and B should have less voting power in
M that she does in V. Examining the Shapley-Shubik power indices for both games, we see that % > %
for voter A, % < % for voter B, and % > 0 for voters C, D, and E. This indicates that, on this pair
of games, the Shapley-Shubik power index is consistent with the monotonicity property. If we look at the
voting powers according to the Banzhaf power index for both games, we see that 1% < % for voter A, % < %
for voter B, and % > 0 for voters C, D, and E. In this example, voter A has less power in game M than
in game N, which violates monotonicity. This indicates that, on this pair of games, the Banzhaf power
index violates monotonicity. In this way the Shapley-Shubik power index is better than the Banzhaf power
index for calculating voting power. The goal of this study is to find all voting power indices that satisfy the

properties of normalization, symmetry, dummy, dummy independence, and monotonicity.

3. Three Player Games

To begin working on the problem, I started looking at small games. When looking at three player games, it
started getting a little interesting. First, I wrote down all the possible three player games by listing winning
coalitions. Since the definition of simple voting games that I am using states that the coalition including all
players in the game must be a winning coalition, I began with that as the only winning coalition. Then I
added all the possible coalitions with two players to create new games, and then went on to coalitions of one
player while making sure I did not have two disjoint winning coaltions. I found five games:

1. ABC

2. ABC,AB

. ABC,AB,AC

. ABC,AB,AC,BC
5. ABC,AB,AC,A

3
4

By using only the specified properties, you can find the voting power of each voter in each of the 5
games. In the first game, if the voters are relabeled, the winning coalitions don’t change. Therefore, based
on symmetry, the voters must all have an equal amount of voting power. Since the powers must add up to 1,
according to normalization, each voter must have a power of % In the second game, voter C can’t change a
losing coalition to a winning coalition; so by the dummy property, voter C has 0 voting power. By symmetry
and normalization, A and B have equal power that must add up to 1 so they must each have a voting power
of % In the third game, though, it is impossible to find an exact power for the voters. This is because all
the voters have some voting power, but they don’t all have equal voting power. Voters B and C have equal
voting power, but since we don’t know the exact value, they are both assigned a value of z. Then since the
voting powers must add up to 1, we can assign a value of 1 — 2z to voter A. Game four and five are similar
to games one and two. In the fourth game, voters A, B, and C all have a voting power of % In the fifth
game, voter A has a voting power of 1 and voters B and C both have a voting power of 0.



More can be learned about the value of x by using monotonicity. To do this, I compared games 2 and
3. Since voters A and C have one more winning coalition in game 3 than they do in game 2, they need to
have more voting power in game 3 than in game 2. Looking at voter A, this shows that 1 — 2z > % which
can be reduced to z < i. Looking at voter C, this shows that x > 0. Although I still don’t have an exact
value for x, I know that 0 < z < %. With this constraint, we have characterized the possible voting powers
for three-player simple voting games for any power index that satisfies the five properties.

4. Four Player Games

After looking at three player games, I looked at four player games. I used the same process as I did before
to find the voting power of each voter in all games with four voters. Although the three player case was
trivial, the four player case became quite complicated. In the following table, I called the voters 1, 2, 3, and
4. Here is a table of my findings:

Winning Coalitions Power Monotonicity Inequalities

1 [ 1234 19143

2 | 1234,123 3,3,5,0

3 | 1234,123,124 3—b3—bbb [2(124): 3 <1 -b1>b0<b

4 | 1234,123,124,134 1—-3d,d,d,d 3(134): 5 —b<1-3d,; —b>d,b<d

5 [ 1234,123,124,134,234 $i 4401 4(234): 1-3d> ;,d< 1

6 [ 1234,123,124,12 3:3,0,0 3(12): 3 —b<3,b6>0

7 | 1234,123,124,134,12 1-29 hhgyg | 412): 1 -3d<1-29 _hd<hd>g
6(134): 3 <1—-29g—h,s>h0<g

8 | 1234,123,124,134,234,12 s—fs—ffF [5(02): 1< —F 1>
7(234): 1-2g—h>35—-fh<5—fg</

9 | 1234,123,124,134,12,13 1— 2k, k,k,0 7(13): 1—29g—h<1-2k,h>k,g<k,g>0

10 | 1234,123,124,134,234,12,13 1—-2n—p,n,n,p | 9234): 1 -2k >1—2n — 2 E<n,0<p
8(13)% fS].—Q’ﬂ pag onafﬁmpr

11 | 1234,123,124,134,12,13,14 1—3m,m,m,m | 9(14): 1 -2k <1-3m,k>m,0<m

12 | 1234,123,124,134,234,12,13,14 | 1 —3q¢,q¢,q,q 10(14): 1—-2n—p<1-3¢,n>¢q,p<q
11(234): 1 —=3m > 1 —3q,m <q

13 | 1234,123,124,134,234,12,1323 | £,%, 1,0 1023): 1-2n—p>1,n<Lfp>0

14 | 1234,123,124,134,12,13,14,1 1,0,0,0 11(1): 1-=3m < 1,m 2 0

From the table, we can see that there are fourteen games instead of five, ten variables instead of one,
and about thirty monotonicity inequalities instead of two. These inequalities create a convex set in a 10-
dimensional space. To get a handle on what this space looks like, I decided to find all the vertices of the
convex set. I found an algorithm in [1] to find all the vertices of a polyhedron. I used this algorithm to write
a program in Maple. The code for this program can be found in the appendix. Before running the program,
I went through the inequalities, getting rid of any that were not as binding as others. For example, 3 L <3 L_p
can be reduced to % > b. From another inequality I knew b < = 1 , but the constraint b < is more blndlng SO
I eliminated the inequality b < % I also took out any redundant inequalities. For example, since b < 1 5 and
d< i then b+d < % which means b+d < % Therefore the inequality b+ d < % is redundant so I removed
it. These were removed to limit degeneracy when running the program. Then I went through and wrote the
inequalities in the form unknowns < constraints so they could easily be written as one big matrix. Once
I had the inequalities in matrix form, I could then run the program. When I ran the program, though, the
computer ended up running out of memory and thus, freezing up. At this point, the program had found 555
vertices and likely had more to find. Already this shows that the space I am dealing with is complex so I
decided to go another route.

5. Weighted Order Value

A weighted order value is a variation of the Shapley-Shubik power index. The Shapley-Shubik power index
looks at the critical voter in all the orderings of the voters. When the orderings are listed in a vertical
fashion, the voters are in columns. The Shapley-Shubik power index considers all the columns to have an



equal weight. This means, there is no difference between a voter being critical in column one versus being
critical in column two. A weighted order value looks at what happens if those columns have different weights.
The weights of each column are denoted as aq,as, as, ..., a, in which the subscript numbers correspond to
the column number from left to right. The only way that a voter will be critical in column one is if one
voter has all the voting power. In this case, the exact value of voting power for all the voters is known so the
weighted order value does not matter. Because of this, a; is ignored when looking at weighted order values.

Let as,as, ..., a, be nonnegative numbers that sum to one. The absolute weighted order power index O

is defined by
Of(N,W) =" [{r : pivot(r) =i, (i) = k}|ax
k=2

I used this approach on the four player games in which the exact voting powers of each of the voters was
unknown. I calculated the voting power of each of the voters by writing down all the possible orderings of
the four voters and then marking the critical voter in each. I then added up the number of times a voter
was critical in each of the columns and multiplied that number by the weight of that column. For each
voter, I added those those up and then divided by the total for all the voters. The orderings and values of
voting power calculated by using the absolute weighted order power index can be found in the appendix.
By using the absolute weighted order power index to calculate voting power in the four player games, each
unknown used when calculating power based on the properties, can be written in terms of ay, as,as, ..., G-
I substituted these new values for the unknowns into the monotonicity inequalities to see if monotonicity
holds for all values of the weights. After doing this, I found these constraints: ag(as + 2 4 2a4) > agay,
3ay > az, and asg + 3asaq + 9azay > azas. Only weighted order values that satisfy these constraints satisfy
monotonicity.

6. Conclusion

The weighted order power index gives a whole new set of power indices to look at. Based on the constaints I
found for aq, as, ..., a, not all of weighted order values satisfy monotonicity. At this point, I am unsure what
exactly these constraints mean for the weighted order values. In the future I want to look more at these
values and find a way to characterize those that satisfy the constraints, thus satisfying monotonicity. I am
hoping to then make a generalization for games with any number of players.
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