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FINDING A VALUE ON PARTIALLY DEFINED GAMES
Introduction

A cooperative game is a pair (N, v) where N = {1, 2, ..., n}
and v is a real-valued function on the nonempty subsets of N.
Elements of N are often called players while subsets of N are
called coalitions. The grand coalition, denoted as N, is composed
when all of the players cooperate together. The function v is
called the worth function, and v(S) is interpreted as the worth of
the coalition S. In other words, Vv(S) is the amount that
individuals in S can jointly obtain if they cooperate as a group.

A game (N, v) is said to be superadditive if
v(Ss UT) > v(S) + v(T) for all disjoint coalitions S, T €N. The
game (N, v) is monotonic if v(S) < v(T) for all coalitions S €T <

N. The game (N, v) is said to be O-normalized if v(i) = 0 for all

i €EN. The O-normalization of a game (N, v) is the game

(N, u) where

a5~ it~ ¥} .
1€S

A game (N, v) is O-monotonic if its O-normalization is monotonic.

In an effort to find some standard of fairness or a predictor
of bargaining solutions, many researchers of game theory have
concentrated on finding the "best" way for individuals in a game to
form coalitions and eventually maximize their savings. Once the
savings have been made they must be allocated to the participating

players. An allocation method is a function that assigns an




allocation to each cooperative game in some class.

For every cooperative game there are 2" - 1 possible
coalitions. Normally the worth of every coalition is known.
However, this may not always be the case. For instance, a firm
might have certain time or monetary constraints that prevent it
from knowing the worth of all coalitions. The utility for a game
of this type occurs when it is impractical to determine every
coalitional worth, v(S). During the summer of 1990, while involved
in a Research Experience for Undergraduates program at Drew
University, David Letscher developed and began to research what
might happen in such cases. He named this topic partially defined

games.

Necessary definitions

A partially defined game, or PDG, is a triple (N, Z, v) where

N = {1, 2, ..., n} is the set of players, Z is a collection of

nonempty subsets of N, and v is a real-valued function on Z. We

will often use v to denote a partially defined game when N and 2

are clear from context.

Definition - Let J be a subset of the player set N such that 1,
n €J. A J-game is a partially defined game where
Z=4{s &SN | |s| €J}.

We will denote a J-game by (N, J, v). 2Z is the set of coalitions

whose worths are known, while J 1is the set of sizes, or

cardinalities, of coalitions whose worths are known. For example,
in a 4 - player partially defined game where the worths of the
grand coalition, the triples, and the singletons are known while

the worths of the pairs are not, J = {1, 3, 4}. For this same

game, Z = {A, B, C, D, ABC, ABD, ACD, BCD, ABCD}. In our research,



we concentrated on O-normalized games like this, where J = {1, n-1,
n}.

An extension of the partially defined game (N, 2, v) is a
cooperative game (N, ¥) satisfying v (S) = v(S) for all
8 &€ 2. A partially defined game (N, Z, v) is superadditive,
monotonic or O-monotonic if there exists an extension that is
superadditive, monotonic, or O-monotonic respectively. A value is

a function from partially defined games to payoff vectors in R".

A Complete Exploration of the 4 - Player Game
Introduction
By restricting this portion of the paper to a 4 - player game
in which J = {1, 3, 4}, we hope to clarify the ways in which one
might allocate the savings of a partially defined game. Firsﬁ, we
must determine possible worths for every coalition, even those

which are not in Z. The following is the list of worths for the

general case of such a game, where Vv(S)=0 when |S|=1. Note:
axb>cx>d>e>0:
S v(S) S v(S)
ABCD a AB ?
ABC b A C ?
AB D C A D ?
A CD d BC ?
BCD e B D 2
CD ?
Clearly, the minimum possible worth for each pair is zero. By

using superadditivity, we can estimate the maximum of the range of
values for all of the pairs. For example, V(ABC) > V(AB) + v(C).
We know that v(C) = 0, so V(ABC) = b > V(AB). By a similar

argument, Vv(ABD) = ¢ > v(AB). Thus, 0 < Vv(AB) < c. Repeat this



process for every unknown worth until the following range points

are known:

S v(S) S v(S)
ABCD a AB 0 -c
ABC b A C 0 -d
AB D (o] A D 0 -4d
A CD d BC 0 -e
BCD e B D 0 - e
CD 0 - e
We can view the game extension where v = (AB, AC, AD, BC, BD,

CD) in a coordinate system in which the space is determined by the
number of unknown worths. For example, here the game space is in
six dimensions, because we have six unknown worths. The real
game 1lies within a certain probability distribution of the
extensions of the game v. One frequently used allocation method is
the Shapley value, ®. The Shapley value for a player i is the
average of the marginal values player i brings to the group of all
individuals over possible orderings. It can be calculated using

the following formula, where s denotes |S]|:

¢, (N, v) -S{:N( ((8-1) I (n-8)1) /a!) [v(S) ~v(8-1)]

In determining an allocation for this game, we look at the
expected value of the Shapley value of the game extensions. The
Shapley value is linear so we obtain the following:

E(2(0)) = 2(E(V)).
The allocation obtained when wusing a uniform probability
distribution results from finding the centroid of the game
extensions and taking its Shapley value. If the figure in the game

space is a regular figure, such as a cube or a rectangular box,



then the centroid is the average of the vertices of the figure.
This approach is discussed below. Otherwise, a weighted
probability distribution may be used, and we take a weighted
average of the vertices of the figure in the game space.
Boxes, Centroids, and Extensions

In the 4 - player example above, we look at the O-monotonic
extensions of the game v. The vertices of the figure in the game
space can be characterized by placing either of the two range
points in each of the six coordinates, forming a convex set. For
each of the six coordinates there are two choices, for example in
the first coordinate you may place 0 or ¢, therefore creating
2® = 64 vertices. These vertices form a rectangular box in which
the centroid is (c/2, d/2, d4d/2, e/2, e/2, e/2). We take the
Shapley value of the centroid and call it the internal value
(Iota) . It is defined as I(v) = & (centroid of #). Finding the
Shapley value for the players in the above game, yields the

following internal value:

I, = af4 + b/12 + c/8 + d4/6 - 3e/8
I, =a/4 + b/12 + ¢c/8 - d/3 + e/8
I. =a/4 + b/12 - 7c/24 + d/12 + e/8
I, =a/4 - b/4 + c/24 + d/12 + e/8

The Superadditive Cases
The following is a look at the 4 - player game where
superadditive extensions are used rather than 0O-monotonic ones.

Look at the superadditive extensions of the game below:

s v(S) s v(S)
ABCD a AB 0 - c
ABC b A C 0 -d
AB D c A D 0 -d
A CD d BC 0 -e
BCD e B D 0 -e
cD 0 -e



By superadditivity, v(ABCD) > v(AB) + v(CD), therefore,

a>c+e. Similarly a > d + e. Recall that ¢ >d > 0 from above,
so a 2 c + e is a sufficient condition. There are three cases of
superadditive extensions defined by these conditions.

Case I. a > c + e. This condition forces the superadditive
extensions to be equivalent to the O-monotonic ones. The vertices
are found, the centroid of the box is computed, and the internal
value is placed in accordance with the above section.

Case II. a < c + e and a > d + e. Because the restriction of
c and e has been lifted the vertices take on a different set of

values. Namely, (0, O or d, 0 or d, 0O or e, 0 or e, 0),

(O, wweows P R T L PP, ;i €),
(B wmeweansj wwenwe i R ey emeeesy )y

(Cp “aloslonrsy 5o ews e R Y o e , a-c),
and (a=€, ecesey coesse i R T i e 5 , €e).

All possible permutations of the above values form a cut-off box in
6-dimensions with 80 vertices. A cross-section of the box in two-

dimensions (x,y) is shown below:

1/2(c? + 2ae -
ac + ae - 1/2(c® + a® + e?).

(0,2 (a-e,e)
As.
o —_— — — (¢cya-e)
b
A
(0,0Y (cy0)
xi
In computing the centroid of the box we first find the area of
the figure: Area = A; + A,.
A, =1xw=c(a-c) = ac - c?.
B, = 1/2(by, + by)h = ;!Z(ae;_e + ¢c) (e - (a-c))

Therefore, Area
Assume the centroid is in the rectangular portion of the box. Find

the value along the x-axis that balances half the area of the box



by solving A/2 = ex for x to obtain

2 2

X = (2ac + 2ae - c¢ - a° - ez)/4e; call this value x1. Repeat this

process in the y-direction by solving A/2 = cy for y to get y =

2 2

(2ac + 2ae - c® - a? - €?)/4c; call this value yl. Show that x is
in the box by showing x < a - e. This inequality results in (a-c)?
> 3e? - 2ae. Similarly for y < a - ¢, (a-e)? > 3c? - 2ac. If the
centroid is not in the rectangular portion of the box, then one or
both of the inequalities is reversed. If x > a - e, then solve the
quadratic A/2 = (1/2)(2a - c-x)(c-x) for x, where the right hand
side 1is the area of the trapezoid formed by dropping a
perpendicular line at x. Solving for x yields
X = a t (v2/2)(v(a? - 2ac + 2ae + ¢ - e?). Disregard
a + (v2/2)(v(a? - 2ac + 2ae + c®2 - e?) because it does not lie in
the original trapézoid. Similarly if y > a - ¢, then y = a -
(v2/2) (v(a® - 2ae + 2ac - c® + e?). cCall these values x2 and y2
respectively. Once the centroid has been found, a new game
extension has been created and one can easily take its Shapley
value to produce the internal value for this game.
Summary of the Procedure in Case ITI.
The following is a pseudo-algorithm for computing the
centroid:
If (a-c)? > 3e? - 2ae
Then use x1.
Else use x2.
If (a-e)? > 3c? - 2ac
Then use yl.
Else use y2.

This process always results in the centroid of the cross-section in

two-dimensions, because the remaining four dimensions look the same



as you look out from the cross-section. For example, when the
centroid of the above figure is in the rectangle, its coordiﬁates
are:

((2ac+2ae-c?-a’-e?) /4e,d/2,d/2,e/2,e/2, (2ac+2ae-c?~-a’-e?) /4c) .

Case III. a < d + e. In this case, the restrictions have
been lifted on all of the pairs, resulting in a six-dimensional box
that is cut off in all directions. There are 125 vertices to this
box, because each of the five permutations used above for c are
used here for c, d, and d again. This results in 5% = 125 vertices.
The centroid is computed by using the algorithm above, and the
Shapley value of the game using the centroid of the game extensions
is taken to produce the internal value.

Conclusion

In a 4-playér partially defined game, the internal value can
be used to allocate savings. The above procedures show that this
value can be determined regardless of what type of extensions are
used. The procedures also work when J = {1,2,4}. Therefore, a
value exists on all 4-player games, but it is yet to be determined

if the internal value generalizes to n players.

Generalizing the Shapley Value on Partially Defined Games
Introduction
In a partially defined game, some of the v(S) in the Shapley
value formula will\be unknown. As shown above, by using the
superadditivity property, one can estimate the ranges of the
missing values. These form the extensions of the game, which are

a convex set of values. In order to find which value might be the



best one to use, we find the vertices of our convex set.
A function for finding the vertices

When we find the vertices of the set of possible values in the
manner stated earlier, points which do not even exist in our set
sometimes appear to be vertices. For example, 1look at the
following general case of the 5 - player partially defined game

where J={1,4,5}, v(S)=0 when |S|=1, and a>b>c>d>e>f>0:

s v(S) s v(S)

ABCDE a BC E 0 - f

ABCD b B DE 0 -f

ABC E c CDE 0 -f

AB DE d AB 0 - V(ABE)

A CDE e AC 0 - Vv(ACE)
BCDE £ A D 0 - V(ADE)

ABC 0 -c A E 0 - v(ADE)

AB D 0 -4d BC 0 - Vv(BCE)

AB E 0 -4d B D 0 - v(BDE)

A CD 0 -e B E 0 - v(BDE)

ACE 0 -e cD 0 - v(CDE)

A DE 0 -e CE 0 - v(CDE)
BCD 0 -f DE 0 - v (CDE)

If we find the vertices of this set as we did before, it would be
possible for Vv(ABC) = 0 while Vv(AB) = d > 0. By superadditivity,
though, this can never be the case.

In addition, some of the vertices actually coalesce, forming
single vertices which should intuitively hold more weight than
others. For example, the vertices of the 5 - player game above
form a set which looks like a box on top of another box in 20-
dimensional space. If we set V(ACDE) = Vv(BCDE) = 0, the vertices
form a set in which the top box shrinks to a single point. Thus,
eight vertices collapse into one.

Rather than estimate all the ranges of v(S) for all S where
|S|€J, find the 2" possible vertices, and then throw away all of

the vertices which cannot exist and add in those which occur more



than once, we have defined a function for finding the vertices of
any partially defined game:

Given 6§(S) where §: 2" -> {0,1}.
Define i,(S) = §(S)min{v(T)| SST}+ (1 - §(S))max{d (R)| RES}.

In other words, we can randomly assign every coalition which has an
unknown worth a 6§(S) = 0 or 1. There will be 2" such combinations.
For each combination, we can go down the list of coalitions of
unknown worths and find i,(S) for each such coalition. Thus, each
sequence, §, will yield a point, 9,, in the monotonic extensions of
the partially defined game. Henceforth, the monotonic extensions
of the partially defined game, v, shall be denoted as ME(vV).
Below, we show that each of these points is a vertex.

Theorem 1: Given any partially defined game, (N, Z, v), o, is a
vertex of the monotonic extensions of v.

Proof:

If for all ¥, and 02 €ME(v) such that ¥, + ¥, = 2 ¥, implies that 0,
= 0, = U;, then i, 1s a vertex.
Assume v, and ¥V, € ME(v) satisfy o, + ¥, = 2 i,.
Base Case - Let |S| = 2.
If §(S) = 0, then ¥,(S) = max{i (R)| RES}, by definition of Us(8).
= max{v(R) | RES}, because |S|=2.
= 0, because worth of all singletons is 0.
Thus, ¥,(S) + v,(S) 0.
U,(S) 2 0 and ¥,(S) 2 0, by monotonicity.
Therefore, 61(S§ = 10,(8) = U,(S).
If 6(S) = 1, then i,(S)= min{v(T)| SET}, by definition.
> 0,(S), U,(S), by monotonicity.
But, ,(S) + 0,(5) = 2 i,(S), by assumption.
Therefore, v,(S) = 0,(S) = U,4(S).

Inductive Hypothesis - Assume 9,(S) = 0,(S) = ,(S), where |S|<g.

Inductive Step - Prove 9,(S) = 0,(S) = 0,(S), where |S| = g+l.
If §(S) = 0, then i (8) = max{ﬁsz)l RES}, by definition of i,(S).
= J,(R) for some RES, where |R|<g.
Thus, U,(S) + 0,(5) = 2 9 (R).

v,(8) 2 9,(R) = 9(R) and ©0,(S) 2 9,(R) = O(R), by
monotonicity and the inductive hypothesis.
Therefore, v,(S) = 0,(S) = U,4(S).
1, then i,(S) = min{v(T3| SCT}, by definition.

If §(S)



U,(8), U,(S), by monotonicity.
But, ¥,(S) + ”z(S) = 2 vs(S), by assumption.
Therefore, v,(8) = vz(S) = 5(S)
Hence, all 9, and v2 EEME(V) satisfying ¥, + ¥, = 2 0, imply that .
= U, = U;, and thus v, is a vertex.
Therefore, given any partially defined game, (N, Z, v), ¥, is a
vertex of the monotonic extensions of v.Hl
In order to use the vertices to find an allocation for our
partially defined game, it is important that we know all of them.
How can we be certain that we have found them all? Is it possible
that the 2" different 6 yield the exhaustive list of vertices?
Conjecture: If § is a vertex of ME(v), then 3 é such that ¥ = d;.

Sketch of argument:

Suppose A § such that ¥ = i,.

Thus, 3 S such that §(S) #0 or 1, and
min{v(T) |SET}> ¥ (S) > max{d (R) |[RES}.

Show v is not a vertex of ME(V).

We believe that if 9 (S) # min{v(T)|SET}or max{d (R) |[RES}, then it
cannot be a vertex because there will be points on either
side which average to the "vertex."

Thus, v will not be a vertex.

So, if ¥ is a vertex of ME(vV), then 31 & such that o = i,.H

From Centroids to Averages

After using the above function to find all of the vertices for
a partially defined game, we can attempt to find the centroid of
the set. Then, we could take the Shapley value of this point and
thus have found an allocation for the game. The centroid seems a
strong candidate for the "best" value, but finding the centroid of
game extensions of games with more than four players is not an easy
task. Therefore, the centroid does not seem to be a practical
solution. 1In our quest for a better value, we next turned to a
simple average of the vertices.

Finding an average is a common event in mathematics. The
problem is that if one of the values being averaged is far away

from the others, then the average could be skewed. An important



question was whether such a problem arises in partially defined
games, or are the games such that this average value is actually a
fair allocation method? As discussed earlier, the average of the
vertices of the monotonic extensions of a 4 - player partially
defined game is, in fact, the centroid. With games of more than
four players, though, the sets lack noticeable symmetry, and the
average is skewed away from the centroid.
The Weighted Average

Instead of averaging the vertices, we use a weighted
probability distribution to take a weighted average of the vertices
of the figure in the game space. A definite pattern to the
weighted average exists. Once the weighted average for each
coalition of unknown worths is found, we can find the Shapley value
for this extension.

To find the weighted average of the vertices, one can use the

following formula, where s is any coalition of unknown worth:

A A 2: 1 :
v(S) v'chz;(—gs—,mm{v( 1) R}
where a(R,S) = some integer between 1 and n - 1. The alpha

function is determined by the value of each supercoalition, T,
Minsv(TIRET]

where RET. If we arrange the v(T) in descending order, we can then

assign a(R,S) in ascending order from 1 to n - 1. Thus, the

greatest v(T) is multiplied by the smallest «a(R,S), and the

smallest v(T) is multiplied by the greatest a(R,S). Some examples

of the weighted average of the vertices for coalitions not in Z are

given below:



v (ABC) c/2 + d/4 + e/8 + f£/16
) (ABD) = d/2 + d/4 + e/8 + f/16
 (BCD) f/2 + £/4 + £/8 + f/16

o (AB) = d/2

3d/4 + e/8 + £/16
15£/16

Now that we can find the weighted average of the vertices for
every partially defined game without having to find every vertex
and then take the average, we would like to be able to do the same
for the Shapley value. We have detected a pattern to the Shapley
value at the weighted average of the vertices, but as yet are
unable to generalize it. The Shapley value for the general cases
of both the 4 - and 5 - player games are listed below. Following
those examples, we have given our observations:

4 - players:

%, = a/4 + b/12 + c/8 + 4/6 - 3e/8
g = a/4 + b/12 + ¢c/8 - d/3 + e/8
. = a/4 + b/12 - 7c/24 + d/12 + e/8
% = a/4 - b/4 + c/24 + 4/12 + e/8

5 - players:

&, = a/5 + b/20 + c/15 + 2d/15 + 9e/40 - 19£/40

%, = a/5 + b/20 + c/15 + 2d/15 - 59e/160 + 19£/160

. = a/5 + b/20 + c/15 - 17d/60 + 23e/480 + 19£/160

$ = a/5 + b/20 - 9c/40 + d/120 + 23e/480 + 19£/160

¢ = a/5 - b/5 + c/40 + d/120 + 23e/480 + 19f/160
Observations:

1. The sum of these values is a = V(ABCD) and a = V(ABCDE),

respectively.

2. For every player, a fraction of one of the worths is
subtracted. In every case, that worth is the value of the
coalition not Z of which the player under consideration is NOT
a member.

3. Every player gets 1/|N| of the grand coalition.

4. If we factor 1/|N| out of every value, we see the

following:
4 - players:
%, = 1/4 (a + b/3 + c/2 + 2d/3 - 3e/2)
%, = 1/4 (a + b/3 + c/2 - 44d/3 + e/2)
. = 1/4 (a + b/3 - 7c/6 + d/3 + e/2)
¢ =1/4 (a - b +c/6 + d/3 + e/2)



5 - players:

¢, = 1/5 (a + b/4 + c/3 + 2d/3 + 9e/8 - 19£/8)

®, = 1/5 (a + b/4 + c/3 + 2d/3 - 59e/32 + 19£/32)

& = 1/5 (a + b/4 + ¢/3 - 17d/12 + 23e/96 + 19£/32)

& = 1/5 (a + b/4 - 9c/8 + d/24 + 23e/96 + 19£/32)

& = 1/5 (a - b + c/8 + d/24 + 23e/96 + 19f/32)
Notice that 1/|N-1|, 1/|N-2|, and 2/3 appear often in the
above.

Conclusion

Although we do not have a tangible result for the n - player
case, we believe that one does exist. When it became clear that
the centroid approach, would not generalize to n - players, we
turned to averages as a more accessible method. In the future, we
hope that someone may be able to generalize and build upon the work

which we have already done.
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