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A Biological Auction

• Abstract: The audience will participate in an auction with a somewhat
unusual rule. We will explain why this auction models certain biological
phenomena. Finally, techniques from calculus will be used to determine the
biologically optimal strategy.

• Game theory is about the interaction among people, nations, animals, genes,
or other agents. In their attempt to understand, recommend, or predict
behavior in situations of potential conflict and cooperation, game theorists
develop and analyze mathematical models. Experimentalists have added
empirical critiques and enhancements to the models. In order to illustrate
some of the game theory and experiments, the audience will participate in a
few games (perhaps winning some money!). Applications to economics and
biology will be discussed.
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A Strange Auction

Open ascending bid auction for a prize.

The highest bidder wins the prize but pays her bid.

The second highest bidder wins nothing but pays his bid.

No one else pays.

Play now!

Biological interpretation.
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A Strange Auction Repeated

The value of the prize to you is on the paper and was drawn from a
uniform distribution on 0 to 1000.

Sealed (nonnegative) bid auction for the prize.

Both of us pay the lower bid, but only the higher bidder wins the
prize.

Repeat up to 30 times with a variety of opponents.

Keep track of the strategy you use and its effectiveness.

Play now!

What were the most effective strategies?

David Housman (Goshen College) A Biological Auction October 19, 2018 4 / 23



Strange Auction Model I

Both players pay the lower bid, but only the higher bidder wins the
prize.
A player knows what the prize is worth to him/her but not what it is
worth to his/her opponent.
f (v) is the probability density the prize is worth v to a player.
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Strange Auction Model I
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Strange Auction Model I

Both players pay the lower bid, but only the higher bidder wins the
prize.

A player knows what the prize is worth to him/her but not what it is
worth to his/her opponent.

f (v) is the probability density the prize is worth v to a player.

β(v) is the opponent’s bid if the prize is worth v to him.

If I value the prize at v and bid b, my expected payoff is

π(b) =

∫
β(u)<b

(v − β(u))f (u) du − b

∫
β(u)≥b

f (u) du

I want to choose b ≥ 0 to maximize π(b).
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Payoff Maximization (General Case)

Maximize the following at b = b∗:

π(b) =

∫
β(u)<b

(v − β(u))f (u) du − b

∫
β(u)≥b

f (u) du

Assume β is strictly increasing and F is the cdf of f .

π(b) =

∫ β−1(b)

0
(v − β(u))f (u) du − b(1− F (β−1(b)))

Assume β is differentiable.

π′(b) =
(v − β(β−1(b)))f (β−1(b))

β′(β−1(b)))
− (1−F (β−1(b))) +

bf (β−1(b))

β′(β−1(b)))

Simplify.

π′(b) = vf (β−1(b))/β′(β−1(b)))− (1− F (β−1(b)))

First order necessary condition π′(b∗) = 0.

0 = vf (β−1(b∗))/β′(β−1(b∗)))− (1− F (β−1(b∗)))
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Payoff Maximization (Special Case)

First order necessary condition.

0 = π′(b∗) = vf (β−1(b∗))/β′(β−1(b∗)))− (1− F (β−1(b∗)))

Suppose f (v) = 1, v ∈ [0, 1] and β(v) = av , v ∈ [0, 1]. Hence,
F (v) = v , v ∈ [0, 1] and β−1(b) = b/a, b ∈ [0, a].

0 = v · 1/a− (1− b∗/a)

Solve for b∗.
b∗ = a− v

We have found a local minimum!

π′(b) = v/a− 1 + b/a

π(b) = (v/a− 1)b + (1/2a)b2

The correct maximum is a trigger strategy.

b∗ =

{
0, if v ≤ a/2
a, if v ≥ a/2

David Housman (Goshen College) A Biological Auction October 19, 2018 9 / 23



Strange Auction Model II

Both players pay the lower bid, but only the higher bidder wins the
prize.

A player knows what the prize is worth to him/her but not what it is
worth to his/her opponent.

f (v) is the probability density the prize is worth v to a player.

β(v) is the opponent’s bid if the prize is worth v to him.

If I value the prize at v and bid b, my expected payoff is

π(b) =

∫
β(u)<b

(v − β(u))f (u) du − b

∫
β(u)≥b

f (u) du

Assume β(v) is the player’s payoff maximizing bid, that is,

π(β(v)) ≥ π(b)

for all b ≥ 0.
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Payoff Maximization (General Case)

Maximize the following at b = β(v):

π(b) =

∫
β(u)<b

(v − β(u))f (u) du − b

∫
β(u)≥b

f (u) du

As before, take the derivative.

π′(b) = vf (β−1(b))/β′(β−1(b)))− (1− F (β−1(b)))

First order necessary condition π′(β(v)) = 0.

0 = vf (v)/β′(v)− (1− F (v))

Solve for β′.

β′(v) =
vf (v)

1− F (v)

Solve for β.

β(v) =

∫ v

0

uf (u)

1− F (u)
du

This function is differentiable and increasing from β(0) = 0.
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Payoff Maximization (Special Case)

Suppose f (u) = 1, u ∈ [0, 1] and F (u) = u, u ∈ [0, 1].

β(v) =
∫ v
0

uf (u)
1−F (u) du =

∫ v
0

u
1−u du = −v − ln(1− v).

πmax(v) = 1
2v

2.
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Payoff Maximization Verification

To verify we have found a maximum, substitute

β′(v) =
vf (v)

1− F (v)

into
π′(b) = vf (β−1(b))/β′(β−1(b)))− (1− F (β−1(b)))

to obtain
π′(b) = (1− F (β−1(b))(v/β−1(b)− 1)

which is positive if b < β(v)

and negative if b > β(v).
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Payoff Using the Strategy

The payoff to a player who values the prize at v and bids b

π(b) =

∫ β−1(b)

0
(v − β(u))f (u) du − b(1− F (β−1(b)))

is maximized at b = β(v) = vf (v)/(1− F (v))

πmax(v) =

∫ v

0
(v − β(u))f (u) du − β(v)(1− F (v))

Hence,
πmax(0) = 0

Taking the derivative

π′max(v) = (v − β(v))f (v) + F (v)− β′(v)(1− F (v)) + β(v)f (v)

= vf (v) + F (v)− vf (v)

1− F (v)
(1− F (v))

= F (v) ≥ 0

The more you value the prize, the higher your expected payoff.
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Surprising Observation

Recall the optimal bidding strategy.

β(v) =

∫ v

0

uf (u)

1− F (u)
du

Find the average bid.∫ ∞
0

β(v)f (v) dv =

∫ ∞
0

∫ v

0

uf (u)

1− F (u)
du f (v) dv

Interchange integrals (0 ≤ u ≤ v <∞).∫ ∞
0

β(v)f (v) dv =

∫ ∞
0

uf (u)

1− F (u)

∫ ∞
u

f (v) dv du

Since the inner integral is 1− F (u),∫ ∞
0

β(v)f (v) dv =

∫ ∞
0

uf (u) du

The average bid equals the average value.
For some prize values v , the bid β(v) is greater than the value!
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Exercises

Find the probability that the prize is won and too much is paid.

Repeat the analysis if only the winner pays the lower bid.

Repeat the analysis if only the winner pays the higher bid.
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Evolution with Fixed Set of Proportional Strategies

Start with equal proportions of strategies 0v , 0.5v , ..., 3.0v .
The stable distribution is p(0.5v) = 17/65, p(v) = 16/65,
p(1.5v) = 15/65, p(2v) = 12/65, p(0v) = 5/65,
p(2.5v) = p(3v) = 0.
Lot’s of strategies could invade.
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Evolution with Fixed Set of Proportional Strategies

Start with positive proportions of strategies 0, 0.1v , 0.2v , ..., 2.0v .

Why is this distribution stable?
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Evolution with Fixed Set of Organisms

Start with 0.80v , 0.81v , 0.82v , ..., 1.19v , 1.20v . Remove the poorest
performer, duplicate the best performer, and mutate the
proportionality constant with normal distribution having mean 0 and
standard deviation 0.02.
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Evolution with Fixed Set of Organisms

Start with 0.00v , 0.05v , 0.10v , ..., 0.65v , 0.70v . Remove the poorest
performer, duplicate the best performer, and mutate the
proportionality constant with normal distribution having mean 0 and
standard deviation 0.02.
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Evolution with Fixed Set of Organisms

Start with 0.00v , 0.05v , 0.10v , ..., 0.65v , 0.70v . Remove the poorest
performer, duplicate the best performer, and mutate the
proportionality constant with normal distribution having mean 0 and
standard deviation 0.02.

David Housman (Goshen College) A Biological Auction October 19, 2018 22 / 23



Conclusions

Interesting biological phenomena can be modeled with mathematics.

Different models, based on different assumptions, can result in
different conclusions.

Interesting questions remain unanswered.

Contact: dhousman@goshen.edu.

Questions?
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