Game and Group Theories Together

David Housman and Ebtihal Abdelaziz

Goshen College
Fall 2022

Coalition Game

A coalition game consists of a set N of players and a real-valued worth $w(S)$ for each coalition (nonempty subset) S of players.

S	$w(S)$
$\{1,2,3\}$	60
$\{1,2\}$	48
$\{1,3\}$	24
$\{2,3\}$	18
$\{1\}$	0
$\{2\}$	0
$\{3\}$	0

Coalition Game and Prenucleolus

A coalition game consists of a set N of players and a real-valued worth $w(S)$ for each coalition (nonempty subset) S of players.
An allocation is a vector x of payoffs x_{i} to each player $i \in N$ satisfying $\sum_{i \in N} x_{i}=w(N)$.
The prenucleolus is the allocation x that successively maximizes the minimum coalition excesses $e(x, S)=\sum_{i \in S} x_{i}-w(S)$.

S	$w(S)$	Excess for $(26,23,11)$	
$\{1,2,3\}$	60		
$\{1,2\}$	48	$26+23-48$	$=$
$\{1,3\}$	24	$26+11-24$	$=13$
$\{2,3\}$	18	$23+11-18$	$=16$
$\{1\}$	0	$26-0$	$=$
$\{2\}$	0	$23-0$	$=23$
$\{3\}$	0	$11-0$	$=11$

Coalition Game and Prenucleolus

A coalition game consists of a set N of players and a real-valued worth $w(S)$ for each coalition (nonempty subset) S of players.
An allocation is a vector x of payoffs x_{i} to each player $i \in N$ satisfying $\sum_{i \in N} x_{i}=w(N)$.
The prenucleolus is the allocation x that successively maximizes the minimum coalition excesses $e(x, S)=\sum_{i \in S} x_{i}-w(S)$.

| S | $w(S)$ | Excess for | Excess for | |
| :---: | :---: | :---: | ---: | :--- | ---: |
| $\{1,2,3\}$ | 60 | $(26,23,11)$ | $(29,25,6)$ | |
| $\{1,2\}$ | 48 | 1 | $29+25-48=$ | 6 |
| $\{1,3\}$ | 24 | 13 | $29+6-24=$ | 11 |
| $\{2,3\}$ | 18 | 16 | $25+6-18=$ | 13 |
| $\{1\}$ | 0 | 26 | $29-0=$ | 29 |
| $\{2\}$ | 0 | 23 | $25-0=$ | 25 |
| $\{3\}$ | 0 | 11 | $6-0=$ | 6 |

Coalition Game and Prenucleolus

A coalition game consists of a set N of players and a real-valued worth $w(S)$ for each coalition (nonempty subset) S of players.
An allocation is a vector x of payoffs x_{i} to each player $i \in N$ satisfying $\sum_{i \in N} x_{i}=w(N)$.
The prenucleolus is the allocation x that successively maximizes the minimum coalition excesses $e(x, S)=\sum_{i \in S} x_{i}-w(S)$.

S	$w(S)$	Excess for	Excess for	Excess for	
\{1, 2, 3\}	60	$(26,23,11)$	$(29,25,6)$	(30, 24, 6)	
$\{1,2\}$	48	1	6	$30+24-48$	$=$
$\{1,3\}$	24	13	11	$30+6-24$	12
\{2, 3\}	18	16	13	$24+6-18$	12
\{1\}	0	26	29	30-0	30
\{2\}	0	23	25	24-0	24
\{3\}	0	11	6	6-0	$=$

Coalition Game and Prenucleolus

A coalition game consists of a set N of players and a real-valued worth $w(S)$ for each coalition (nonempty subset) S of players.
An allocation is a vector x of payoffs x_{i} to each player $i \in N$ satisfying $\sum_{i \in N} x_{i}=w(N)$.
The prenucleolus is the allocation x that successively maximizes the minimum coalition excesses $e(x, S)=\sum_{i \in S} x_{i}-w(S)$.

S	$w(S)$	Excess for	Excess for	Excess for
$\{1,2,3\}$	60	$(26,23,11)$	$(29,25,6)$	$(30,24,6)$
$\{1,2\}$	48	1	6	6
$\{1,3\}$	24	13	11	12
$\{2,3\}$	18	16	13	12
$\{1\}$	0	26	29	30
$\{2\}$	0	23	25	24
$\{3\}$	0	11	6	6

Prenucleolus

S	$w(S)$	Excess for
$\{1,2,3\}$	60	$(30,24,6)$
$\{1,2\}$	48	6
$\{1,3\}$	24	12
$\{2,3\}$	18	12
$\{1\}$	0	30
$\{2\}$	0	24
$\{3\}$	0	6

Prenucleolus

S	$w(S)$	Excess for
$\{1,2,3\}$	60	$(30,24,6)$
$\{1,2\}$	48	6
$\{1,3\}$	24	12
$\{2,3\}$	18	12
$\{1\}$	0	30
$\{2\}$	0	24
$\{3\}$	0	6

If x is the prenucleolus, then all excesses must be at least 6 .

Prenucleolus

S	$w(S)$	Excess for
$\{1,2,3\}$	60	$(30,24,6)$
$\{1,2\}$	48	6
$\{1,3\}$	24	12
$\{2,3\}$	18	12
$\{1\}$	0	30
$\{2\}$	0	24
$\{3\}$	0	6

If x is the prenucleolus, then all excesses must be at least 6 . In particular,

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =60 \\
x_{1}+x_{2} & =48 \\
x_{3}-0 & \geq 6
\end{aligned}
$$

Prenucleolus

S	$w(S)$	Excess for
$\{1,2,3\}$	60	$(30,24,6)$
$\{1,2\}$	48	6
$\{1,3\}$	24	12
$\{2,3\}$	18	12
$\{1\}$	0	30
$\{2\}$	0	24
$\{3\}$	0	6

If x is the prenucleolus, then all excesses must be at least 6 . In particular,

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =60 \\
x_{1}+x_{2} & =48 \\
x_{3}-0 & \geq 6
\end{aligned}
$$

Addition of the two inequalities and use of the equality yields $12 \geq 12$.

Prenucleolus

S	$w(S)$	Excess for	Hence, the inequalities must hold
$\{1,2,3\}$	60	$(30,24,6)$	with equality.
$\{1,2\}$	48	6	
$\{1,3\}$	24	12	
$\{2,3\}$	18	12	
$\{1\}$	0	30	
$\{2\}$	0	24	
$\{3\}$	0	6	

If x is the prenucleolus, then all excesses must be at least 6 . In particular,

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =60 \\
x_{1}+x_{2} & =48 \\
- & \geq 6 \\
x_{3}-0 & \geq 6
\end{aligned}
$$

Addition of the two inequalities and use of the equality yields $12 \geq 12$.

Prenucleolus

S	$w(S)$	Excess for
$\{1,2,3\}$	60	$(30,24,6)$
$\{1,2\}$	48	6
$\{1,3\}$	24	12
$\{2,3\}$	18	12
$\{1\}$	0	30
$\{2\}$	0	24
$\{3\}$	0	6

Hence, the inequalities must hold with equality.
Thus, $x_{1}+x_{2}=54$ and $x_{3}=6$.

If x is the prenucleolus, then all excesses must be at least 6 . In particular,

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =60 \\
x_{1}+x_{2} & =48 \\
x_{3}-0 & \geq 6
\end{aligned}
$$

Addition of the two inequalities and use of the equality yields $12 \geq 12$.

Prenucleolus

S	$w(S)$	Excess for
$\{1,2,3\}$	60	$(30,24,6)$
$\{1,2\}$	48	6
$\{1,3\}$	24	12
$\{2,3\}$	18	12
$\{1\}$	0	30
$\{2\}$	0	24
$\{3\}$	0	6

Hence, the inequalities must hold with equality.
Thus, $x_{1}+x_{2}=54$ and $x_{3}=6$.
Furthermore, all remaining excesses must be at least 12 .

If x is the prenucleolus, then all excesses must be at least 6 . In particular,

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =60 \\
x_{1}+x_{2} & =48 \\
x_{3}-0 & \geq 6
\end{aligned}
$$

Addition of the two inequalities and use of the equality yields $12 \geq 12$.

Prenucleolus

S	$w(S)$	Excess for
$\{1,2,3\}$	60	$(30,24,6)$
$\{1,2\}$	48	6
$\{1,3\}$	24	12
$\{2,3\}$	18	12
$\{1\}$	0	30
$\{2\}$	0	24
$\{3\}$	0	6

If x is the prenucleolus, then all excesses must be at least 6 .

Hence, the inequalities must hold with equality.
Thus, $x_{1}+x_{2}=54$ and $x_{3}=6$.
Furthermore, all remaining excesses must be at least 12. In particular,

$$
\begin{aligned}
x_{1}+x_{2} & =54 \\
x_{3} & =6 \\
x_{1}+\quad x_{3}-24 & \geq 12 \\
x_{2}+x_{3}-18 & \geq 12
\end{aligned}
$$ In particular,

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =60 \\
x_{1}+x_{2} & =48 \\
x_{3}-0 & \geq 6
\end{aligned}
$$

Addition of the two inequalities and use of the equality yields $12 \geq 12$.

Prenucleolus

S	$w(S)$	Excess for
$\{1,2,3\}$	60	$(30,24,6)$
$\{1,2\}$	48	6
$\{1,3\}$	24	12
$\{2,3\}$	18	12
$\{1\}$	0	30
$\{2\}$	0	24
$\{3\}$	0	6

If x is the prenucleolus, then all excesses must be at least 6 . In particular,

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =60 \\
x_{1}+x_{2} & =48 \\
-0 & \geq 6 \\
x_{3}-0 & \geq 6
\end{aligned}
$$

Hence, the inequalities must hold with equality.
Thus, $x_{1}+x_{2}=54$ and $x_{3}=6$.
Furthermore, all remaining excesses must be at least 12. In particular,

$$
\begin{aligned}
x_{1}+x_{2} & =54 \\
& =6 \\
x_{3} & =6 \\
x_{1}+\quad x_{3}-24 & \geq 12 \\
x_{2}+x_{3}-18 & \geq 12
\end{aligned}
$$

Addition of the two inequalities and use of the two equalities yields

$$
54+2(6)-24-18 \geq 12+12
$$

Addition of the two inequalities and use of the equality yields $12 \geq 12$.

Prenucleolus

S	$w(S)$	Excess for
$\{1,2,3\}$	60	$(30,24,6)$
$\{1,2\}$	48	6
$\{1,3\}$	24	12
$\{2,3\}$	18	12
$\{1\}$	0	30
$\{2\}$	0	24
$\{3\}$	0	6

If x is the prenucleolus, then all excesses must be at least 6 . In particular,

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =60 \\
x_{1}+x_{2} & =48 \\
- & \geq 6 \\
x_{3}-0 & \geq 6
\end{aligned}
$$

Addition of the two inequalities and use of the equality yields $12 \geq 12$.

Prenucleolus

S	$w(S)$	Excess for
$\{1,2,3\}$	60	$(30,24,6)$
$\{1,2\}$	48	6
$\{1,3\}$	24	12
$\{2,3\}$	18	12
$\{1\}$	0	30
$\{2\}$	0	24
$\{3\}$	0	6

If x is the prenucleolus, then all excesses must be at least 6 . In particular,

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =60 \\
x_{1}+x_{2} & -48 \\
x_{3}-0 & \geq 6
\end{aligned}
$$

Addition of the two inequalities and use of the equality yields $12 \geq 12$.

Hence, the inequalities must hold with equality.
Thus, $x_{1}+x_{2}=54$ and $x_{3}=6$.
Furthermore, all remaining excesses must be at least 12. In particular,

$$
\begin{aligned}
x_{1}+x_{2} & =54 \\
x_{3} & =6 \\
x_{1}+\quad x_{3}-24 & \geq 12 \\
x_{2}+x_{3}-18 & \geq 12
\end{aligned}
$$

Addition of the two inequalities and use of the two equalities yields

$$
54+2(6)-24-18 \geq 12+12
$$

As before, the inequalities must hold with equality.
Thus, $x_{1}=30$ and $x_{2}=24$.

Group

A group is a set G and an operation $*$ satisfying

- Closed: $(\forall x, y \in G)(x * y \in G)$.
- Identity: $(\exists e \in G)(\forall x \in G)(x * e=e * x=x)$.
- Inverses: $(\forall x \in G)(\exists y \in G)(x * y=y * x=0)$.
- Associative: $(\forall x, y, z \in G)((x * y) * z=x *(y * z))$.

Example 1. $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$ with addition modulo n.
Example 2. Symmetries of a regular polygon with composition.
Example 3. Permutations of \mathbb{Z}_{n} with composition.

Coalition Game on a Group

Definition. The coalition game on the group $(G, *)$ consists of the set of players G and the worth $w(S)$ being the number of elements in the smallest subgroup containing S.

Coalition Game on a Group

Definition. The coalition game on the group $(G, *)$ consists of the set of players G and the worth $w(S)$ being the number of elements in the smallest subgroup containing S.

Example. The coalition game on the group $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ with addition modulo 6 has 6 players and $2^{6}-1=63$ coalitions for which

Coalition Game on a Group

Definition. The coalition game on the group $(G, *)$ consists of the set of players G and the worth $w(S)$ being the number of elements in the smallest subgroup containing S.

Example. The coalition game on the group $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ with addition modulo 6 has 6 players and $2^{6}-1=63$ coalitions for which

$$
w(S)= \begin{cases}1, & \text { if } S=\{0\} \\ & \end{cases}
$$

Coalition Game on a Group

Definition. The coalition game on the group $(G, *)$ consists of the set of players G and the worth $w(S)$ being the number of elements in the smallest subgroup containing S.

Example. The coalition game on the group $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ with addition modulo 6 has 6 players and $2^{6}-1=63$ coalitions for which

$$
w(S)= \begin{cases}1, & \text { if } S=\{0\} \\ 2, & \text { if } S=\{3\} \text { or }\{0,3\}\end{cases}
$$

Coalition Game on a Group

Definition. The coalition game on the group $(G, *)$ consists of the set of players G and the worth $w(S)$ being the number of elements in the smallest subgroup containing S.

Example. The coalition game on the group $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ with addition modulo 6 has 6 players and $2^{6}-1=63$ coalitions for which

$$
w(S)= \begin{cases}1, & \text { if } S=\{0\} \\ 2, & \text { if } S=\{3\} \text { or }\{0,3\} \\ 3, & \text { if }\{0\} \neq S \subset\{0,2,4\}\end{cases}
$$

Coalition Game on a Group

Definition. The coalition game on the group $(G, *)$ consists of the set of players G and the worth $w(S)$ being the number of elements in the smallest subgroup containing S.

Example. The coalition game on the group $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ with addition modulo 6 has 6 players and $2^{6}-1=63$ coalitions for which

$$
w(S)= \begin{cases}1, & \text { if } S=\{0\} \\ 2, & \text { if } S=\{3\} \text { or }\{0,3\} \\ 3, & \text { if }\{0\} \neq S \subset\{0,2,4\} \\ 6, & \text { otherwise }\end{cases}
$$

Coalition Game on a Group

Definition. The coalition game on the group $(G, *)$ consists of the set of players G and the worth $w(S)$ being the number of elements in the smallest subgroup containing S.

Example. The coalition game on the group $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ with addition modulo 6 has 6 players and $2^{6}-1=63$ coalitions for which

$$
w(S)= \begin{cases}1, & \text { if } S=\{0\} \\ 2, & \text { if } S=\{3\} \text { or }\{0,3\} \\ 3, & \text { if }\{0\} \neq S \subset\{0,2,4\} \\ 6, & \text { otherwise }\end{cases}
$$

The prenucleolus ν satisfies $\nu_{0}=\nu_{2}=\nu_{4}=0$ and $\nu_{1}=\nu_{3}=\nu_{5}=2$.

Coalition Game on a Group

Definition. The coalition game on the group $(G, *)$ consists of the set of players G and the worth $w(S)$ being the number of elements in the smallest subgroup containing S.

Example. The coalition game on the group $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ with addition modulo 6 has 6 players and $2^{6}-1=63$ coalitions for which

$$
w(S)= \begin{cases}1, & \text { if } S=\{0\} \\ 2, & \text { if } S=\{3\} \text { or }\{0,3\} \\ 3, & \text { if }\{0\} \neq S \subset\{0,2,4\} \\ 6, & \text { otherwise }\end{cases}
$$

The prenucleolus ν satisfies $\nu_{0}=\nu_{2}=\nu_{4}=0$ and $\nu_{1}=\nu_{3}=\nu_{5}=2$.
Proof. The minimum excess for ν is -4 .

Coalition Game on a Group

Definition. The coalition game on the group $(G, *)$ consists of the set of players G and the worth $w(S)$ being the number of elements in the smallest subgroup containing S.

Example. The coalition game on the group $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ with addition modulo 6 has 6 players and $2^{6}-1=63$ coalitions for which

$$
w(S)= \begin{cases}1, & \text { if } S=\{0\} \\ 2, & \text { if } S=\{3\} \text { or }\{0,3\} \\ 3, & \text { if }\{0\} \neq S \subset\{0,2,4\} \\ 6, & \text { otherwise }\end{cases}
$$

The prenucleolus ν satisfies $\nu_{0}=\nu_{2}=\nu_{4}=0$ and $\nu_{1}=\nu_{3}=\nu_{5}=2$.
Proof. The minimum excess for ν is -4 . So, if x is the prenucleolus, then $x_{1}, x_{3}, x_{5} \geq 2$.

Coalition Game on a Group

Definition. The coalition game on the group $(G, *)$ consists of the set of players G and the worth $w(S)$ being the number of elements in the smallest subgroup containing S.

Example. The coalition game on the group $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ with addition modulo 6 has 6 players and $2^{6}-1=63$ coalitions for which

$$
w(S)= \begin{cases}1, & \text { if } S=\{0\} \\ 2, & \text { if } S=\{3\} \text { or }\{0,3\} \\ 3, & \text { if }\{0\} \neq S \subset\{0,2,4\} \\ 6, & \text { otherwise }\end{cases}
$$

The prenucleolus ν satisfies $\nu_{0}=\nu_{2}=\nu_{4}=0$ and $\nu_{1}=\nu_{3}=\nu_{5}=2$.
Proof. The minimum excess for ν is -4 . So, if x is the prenucleolus, then $x_{1}, x_{3}, x_{5} \geq 2$. By Theorem 1, $x_{0}, x_{2}, x_{4} \geq 0$.

Coalition Game on a Group

Definition. The coalition game on the group $(G, *)$ consists of the set of players G and the worth $w(S)$ being the number of elements in the smallest subgroup containing S.

Example. The coalition game on the group $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ with addition modulo 6 has 6 players and $2^{6}-1=63$ coalitions for which

$$
w(S)= \begin{cases}1, & \text { if } S=\{0\} \\ 2, & \text { if } S=\{3\} \text { or }\{0,3\} \\ 3, & \text { if }\{0\} \neq S \subset\{0,2,4\} \\ 6, & \text { otherwise }\end{cases}
$$

The prenucleolus ν satisfies $\nu_{0}=\nu_{2}=\nu_{4}=0$ and $\nu_{1}=\nu_{3}=\nu_{5}=2$.
Proof. The minimum excess for ν is -4 . So, if x is the prenucleolus, then $x_{1}, x_{3}, x_{5} \geq 2$. By Theorem $1, x_{0}, x_{2}, x_{4} \geq 0$. Combining these inequalities with $x_{0}+x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=6$, we obtain $x=\nu$.

Results for All Finite Groups

Theorem 1. If ν is the prenucleolus for a coalition game on the group $(G, *)$, then $\nu_{i} \geq 0$ for all players $i \in G$.

Results for All Finite Groups

Theorem 1. If ν is the prenucleolus for a coalition game on the group $(G, *)$, then $\nu_{i} \geq 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_{i}<0$ for some $i \in G$.

Results for All Finite Groups

Theorem 1. If ν is the prenucleolus for a coalition game on the group $(G, *)$, then $\nu_{i} \geq 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_{i}<0$ for some $i \in G$. Consider any coalition S not containing i.

Results for All Finite Groups

Theorem 1. If ν is the prenucleolus for a coalition game on the group $(G, *)$, then $\nu_{i} \geq 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_{i}<0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S)=\sum_{j \in S} \nu_{j}-w(S)$

Results for All Finite Groups

Theorem 1. If ν is the prenucleolus for a coalition game on the group $(G, *)$, then $\nu_{i} \geq 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_{i}<0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S)=\sum_{j \in S} \nu_{j}-w(S)$ $>\sum_{j \in S} \nu_{j}+\nu_{i}-w(S \cup\{i\})$

Results for All Finite Groups

Theorem 1. If ν is the prenucleolus for a coalition game on the group $(G, *)$, then $\nu_{i} \geq 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_{i}<0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S)=\sum_{j \in S} \nu_{j}-w(S)$ $>\sum_{j \in S} \nu_{j}+\nu_{i}-w(S \cup\{i\})$ which is the excess $e(\nu, S \cup\{i\})$.

Results for All Finite Groups

Theorem 1. If ν is the prenucleolus for a coalition game on the group $(G, *)$, then $\nu_{i} \geq 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_{i}<0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S)=\sum_{j \in S} \nu_{j}-w(S)$ $>\sum_{j \in S} \nu_{j}+\nu_{i}-w(S \cup\{i\})$ which is the excess e $(\nu, S \cup\{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased,

Results for All Finite Groups

Theorem 1. If ν is the prenucleolus for a coalition game on the group $(G, *)$, then $\nu_{i} \geq 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_{i}<0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S)=\sum_{j \in S} \nu_{j}-w(S)$ $>\sum_{j \in S} \nu_{j}+\nu_{i}-w(S \cup\{i\})$ which is the excess $e(\nu, S \cup\{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Results for All Finite Groups

Theorem 1. If ν is the prenucleolus for a coalition game on the group $(G, *)$, then $\nu_{i} \geq 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_{i}<0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S)=\sum_{j \in S} \nu_{j}-w(S)$ $>\sum_{j \in S} \nu_{j}+\nu_{i}-w(S \cup\{i\})$ which is the excess $e(\nu, S \cup\{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Theorem 2. If ν is the prenucleolus for a coalition game on the non-trivial group $(G, *)$, then $\nu_{e}=0$ for the identity element e.

Proof. Suppose to the contrary that $\nu_{e}>0$.

Results for All Finite Groups

Theorem 1. If ν is the prenucleolus for a coalition game on the group $(G, *)$, then $\nu_{i} \geq 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_{i}<0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S)=\sum_{j \in S} \nu_{j}-w(S)$ $>\sum_{j \in S} \nu_{j}+\nu_{i}-w(S \cup\{i\})$ which is the excess $e(\nu, S \cup\{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Theorem 2. If ν is the prenucleolus for a coalition game on the non-trivial group $(G, *)$, then $\nu_{e}=0$ for the identity element e.

Proof. Suppose to the contrary that $\nu_{e}>0$. Consider any coalition S not containing e.

Results for All Finite Groups

Theorem 1. If ν is the prenucleolus for a coalition game on the group $(G, *)$, then $\nu_{i} \geq 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_{i}<0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S)=\sum_{j \in S} \nu_{j}-w(S)$ $>\sum_{j \in S} \nu_{j}+\nu_{i}-w(S \cup\{i\})$ which is the excess $e(\nu, S \cup\{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Theorem 2. If ν is the prenucleolus for a coalition game on the non-trivial group $(G, *)$, then $\nu_{e}=0$ for the identity element e.

Proof. Suppose to the contrary that $\nu_{e}>0$. Consider any coalition S not containing e. The excess $e(\nu, S)=\sum_{j \in S} \nu_{j}-w(S)$

Results for All Finite Groups

Theorem 1. If ν is the prenucleolus for a coalition game on the group $(G, *)$, then $\nu_{i} \geq 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_{i}<0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S)=\sum_{j \in S} \nu_{j}-w(S)$ $>\sum_{j \in S} \nu_{j}+\nu_{i}-w(S \cup\{i\})$ which is the excess $e(\nu, S \cup\{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Theorem 2. If ν is the prenucleolus for a coalition game on the non-trivial group $(G, *)$, then $\nu_{e}=0$ for the identity element e.

Proof. Suppose to the contrary that $\nu_{e}>0$. Consider any coalition S not containing e. The excess $e(\nu, S)=\sum_{j \in S} \nu_{j}-w(S)$ which is $<\sum_{j \in S} \nu_{j}+\nu_{e}-w(S \cup\{i\})$

Results for All Finite Groups

Theorem 1. If ν is the prenucleolus for a coalition game on the group $(G, *)$, then $\nu_{i} \geq 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_{i}<0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S)=\sum_{j \in S} \nu_{j}-w(S)$ $>\sum_{j \in S} \nu_{j}+\nu_{i}-w(S \cup\{i\})$ which is the excess $e(\nu, S \cup\{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Theorem 2. If ν is the prenucleolus for a coalition game on the non-trivial group $(G, *)$, then $\nu_{e}=0$ for the identity element e.

Proof. Suppose to the contrary that $\nu_{e}>0$. Consider any coalition S not containing e. The excess $e(\nu, S)=\sum_{j \in S} \nu_{j}-w(S)$ which is $<\sum_{j \in S} \nu_{j}+\nu_{e}-w(S \cup\{i\})$ which is the excess $e(\nu, S \cup\{e\})$.

Results for All Finite Groups

Theorem 1. If ν is the prenucleolus for a coalition game on the group $(G, *)$, then $\nu_{i} \geq 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_{i}<0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S)=\sum_{j \in S} \nu_{j}-w(S)$ $>\sum_{j \in S} \nu_{j}+\nu_{i}-w(S \cup\{i\})$ which is the excess $e(\nu, S \cup\{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Theorem 2. If ν is the prenucleolus for a coalition game on the non-trivial group $(G, *)$, then $\nu_{e}=0$ for the identity element e.

Proof. Suppose to the contrary that $\nu_{e}>0$. Consider any coalition S not containing e. The excess $e(\nu, S)=\sum_{j \in S} \nu_{j}-w(S)$ which is $<\sum_{j \in S} \nu_{j}+\nu_{e}-w(S \cup\{i\})$ which is the excess $e(\nu, S \cup\{e\})$. By transferring a small amount from player e to the other players, the minimum excess is strictly increased,

Results for All Finite Groups

Theorem 1. If ν is the prenucleolus for a coalition game on the group $(G, *)$, then $\nu_{i} \geq 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_{i}<0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S)=\sum_{j \in S} \nu_{j}-w(S)$ $>\sum_{j \in S} \nu_{j}+\nu_{i}-w(S \cup\{i\})$ which is the excess $e(\nu, S \cup\{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Theorem 2. If ν is the prenucleolus for a coalition game on the non-trivial group $(G, *)$, then $\nu_{e}=0$ for the identity element e.

Proof. Suppose to the contrary that $\nu_{e}>0$. Consider any coalition S not containing e. The excess $e(\nu, S)=\sum_{j \in S} \nu_{j}-w(S)$ which is $<\sum_{j \in S} \nu_{j}+\nu_{e}-w(S \cup\{i\})$ which is the excess $e(\nu, S \cup\{e\})$. By transferring a small amount from player e to the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Another General Result

Theorem 3. If p is prime, then the prenucleolus ν of the coalition game
on \mathbb{Z}_{p} satisfies $\nu_{i}=\left\{\begin{array}{ll}p /(p-1) & i \neq 0 \\ 0 & i=0\end{array}\right.$.

Another General Result

Theorem 3. If p is prime, then the prenucleolus ν of the coalition game on \mathbb{Z}_{p} satisfies $\nu_{i}=\left\{\begin{array}{ll}p /(p-1) & i \neq 0 \\ 0 & i=0\end{array}\right.$.
Proof. $\nu_{0}=0$ by Theorem 2 .

Another General Result

Theorem 3. If p is prime, then the prenucleolus ν of the coalition game on \mathbb{Z}_{p} satisfies $\nu_{i}=\left\{\begin{array}{ll}p /(p-1) & i \neq 0 \\ 0 & i=0\end{array}\right.$.
Proof. $\nu_{0}=0$ by Theorem 2. Observe that $w(S)=n$ as long as $S \neq\{0\}$.

Another General Result

Theorem 3. If p is prime, then the prenucleolus ν of the coalition game on \mathbb{Z}_{p} satisfies $\nu_{i}=\left\{\begin{array}{ll}p /(p-1) & i \neq 0 \\ 0 & i=0\end{array}\right.$.
Proof. $\nu_{0}=0$ by Theorem 2. Observe that $w(S)=n$ as long as $S \neq\{0\}$. Suppose $\nu_{i}<\nu_{j}$ for two players $i, j \in \mathbb{Z}_{n}$.

Another General Result

Theorem 3. If p is prime, then the prenucleolus ν of the coalition game on \mathbb{Z}_{p} satisfies $\nu_{i}=\left\{\begin{array}{ll}p /(p-1) & i \neq 0 \\ 0 & i=0\end{array}\right.$.
Proof. $\nu_{0}=0$ by Theorem 2. Observe that $w(S)=n$ as long as $S \neq\{0\}$. Suppose $\nu_{i}<\nu_{j}$ for two players $i, j \in \mathbb{Z}_{n}$. Consider any set $S \subset \mathbb{Z}_{n}-\{i,, j\}$.

Another General Result

Theorem 3. If p is prime, then the prenucleolus ν of the coalition game on \mathbb{Z}_{p} satisfies $\nu_{i}=\left\{\begin{array}{ll}p /(p-1) & i \neq 0 \\ 0 & i=0\end{array}\right.$.
Proof. $\nu_{0}=0$ by Theorem 2. Observe that $w(S)=n$ as long as $S \neq\{0\}$. Suppose $\nu_{i}<\nu_{j}$ for two players $i, j \in \mathbb{Z}_{n}$. Consider any set $S \subset \mathbb{Z}_{n}-\{i,, j\}$. The excess

$$
e(\nu, S \cup\{i\})
$$

Another General Result

Theorem 3. If p is prime, then the prenucleolus ν of the coalition game on \mathbb{Z}_{p} satisfies $\nu_{i}=\left\{\begin{array}{ll}p /(p-1) & i \neq 0 \\ 0 & i=0\end{array}\right.$.
Proof. $\nu_{0}=0$ by Theorem 2. Observe that $w(S)=n$ as long as $S \neq\{0\}$. Suppose $\nu_{i}<\nu_{j}$ for two players $i, j \in \mathbb{Z}_{n}$. Consider any set $S \subset \mathbb{Z}_{n}-\{i,, j\}$. The excess

$$
e(\nu, S \cup\{i\})=\sum_{k \in S} \nu_{k}+\nu_{i}-w(S \cup\{i\})
$$

Another General Result

Theorem 3. If p is prime, then the prenucleolus ν of the coalition game on \mathbb{Z}_{p} satisfies $\nu_{i}=\left\{\begin{array}{ll}p /(p-1) & i \neq 0 \\ 0 & i=0\end{array}\right.$.
Proof. $\nu_{0}=0$ by Theorem 2. Observe that $w(S)=n$ as long as $S \neq\{0\}$. Suppose $\nu_{i}<\nu_{j}$ for two players $i, j \in \mathbb{Z}_{n}$. Consider any set $S \subset \mathbb{Z}_{n}-\{i,, j\}$. The excess

$$
\begin{aligned}
e(\nu, S \cup\{i\}) & =\sum_{k \in S} \nu_{k}+\nu_{i}-w(S \cup\{i\}) \\
& =\sum_{k \in S} \nu_{k}+\nu_{i}-w(S \cup\{j\})
\end{aligned}
$$

Another General Result

Theorem 3. If p is prime, then the prenucleolus ν of the coalition game on \mathbb{Z}_{p} satisfies $\nu_{i}=\left\{\begin{array}{ll}p /(p-1) & i \neq 0 \\ 0 & i=0\end{array}\right.$.
Proof. $\nu_{0}=0$ by Theorem 2. Observe that $w(S)=n$ as long as $S \neq\{0\}$. Suppose $\nu_{i}<\nu_{j}$ for two players $i, j \in \mathbb{Z}_{n}$. Consider any set $S \subset \mathbb{Z}_{n}-\{i,, j\}$. The excess

$$
\begin{aligned}
e(\nu, S \cup\{i\}) & =\sum_{k \in S} \nu_{k}+\nu_{i}-w(S \cup\{i\}) \\
& =\sum_{k \in S} \nu_{k}+\nu_{i}-w(S \cup\{j\}) \\
& <\sum_{k \in S} \nu_{k}+\nu_{j}-w(S \cup\{j\})
\end{aligned}
$$

Another General Result

Theorem 3. If p is prime, then the prenucleolus ν of the coalition game on \mathbb{Z}_{p} satisfies $\nu_{i}=\left\{\begin{array}{ll}p /(p-1) & i \neq 0 \\ 0 & i=0\end{array}\right.$.
Proof. $\nu_{0}=0$ by Theorem 2. Observe that $w(S)=n$ as long as $S \neq\{0\}$. Suppose $\nu_{i}<\nu_{j}$ for two players $i, j \in \mathbb{Z}_{n}$. Consider any set $S \subset \mathbb{Z}_{n}-\{i,, j\}$. The excess

$$
\begin{aligned}
e(\nu, S \cup\{i\}) & =\sum_{k \in S} \nu_{k}+\nu_{i}-w(S \cup\{i\}) \\
& =\sum_{k \in S} \nu_{k}+\nu_{i}-w(S \cup\{j\}) \\
& <\sum_{k \in S} \nu_{k}+\nu_{j}-w(S \cup\{j\}) \\
& =e(\nu, S \cup\{j\})
\end{aligned}
$$

Another General Result

Theorem 3. If p is prime, then the prenucleolus ν of the coalition game on \mathbb{Z}_{p} satisfies $\nu_{i}=\left\{\begin{array}{ll}p /(p-1) & i \neq 0 \\ 0 & i=0\end{array}\right.$.
Proof. $\nu_{0}=0$ by Theorem 2. Observe that $w(S)=n$ as long as $S \neq\{0\}$. Suppose $\nu_{i}<\nu_{j}$ for two players $i, j \in \mathbb{Z}_{n}$. Consider any set $S \subset \mathbb{Z}_{n}-\{i,, j\}$. The excess

$$
\begin{aligned}
e(\nu, S \cup\{i\}) & =\sum_{k \in S} \nu_{k}+\nu_{i}-w(S \cup\{i\}) \\
& =\sum_{k \in S} \nu_{k}+\nu_{i}-w(S \cup\{j\}) \\
& <\sum_{k \in S} \nu_{k}+\nu_{j}-w(S \cup\{j\}) \\
& =e(\nu, S \cup\{j\})
\end{aligned}
$$

By transferring a small amount from player j to player i, the minimum excess will be increased,

Another General Result

Theorem 3. If p is prime, then the prenucleolus ν of the coalition game on \mathbb{Z}_{p} satisfies $\nu_{i}=\left\{\begin{array}{ll}p /(p-1) & i \neq 0 \\ 0 & i=0\end{array}\right.$.
Proof. $\nu_{0}=0$ by Theorem 2. Observe that $w(S)=n$ as long as $S \neq\{0\}$. Suppose $\nu_{i}<\nu_{j}$ for two players $i, j \in \mathbb{Z}_{n}$. Consider any set $S \subset \mathbb{Z}_{n}-\{i,, j\}$. The excess

$$
\begin{aligned}
e(\nu, \mathcal{S} \cup\{i\}) & =\sum_{k \in S} \nu_{k}+\nu_{i}-w(S \cup\{i\}) \\
& =\sum_{k \in S} \nu_{k}+\nu_{i}-w(S \cup\{j\}) \\
& <\sum_{k \in S} \nu_{k}+\nu_{j}-w(S \cup\{j\}) \\
& =e(\nu, S \cup\{j\})
\end{aligned}
$$

By transferring a small amount from player j to player i, the minimum excess will be increased, a contradiction to ν being the prenucleolus.

Another General Result

Theorem 3. If p is prime, then the prenucleolus ν of the coalition game on \mathbb{Z}_{p} satisfies $\nu_{i}=\left\{\begin{array}{ll}p /(p-1) & i \neq 0 \\ 0 & i=0\end{array}\right.$.
Proof. $\nu_{0}=0$ by Theorem 2. Observe that $w(S)=n$ as long as $S \neq\{0\}$. Suppose $\nu_{i}<\nu_{j}$ for two players $i, j \in \mathbb{Z}_{n}$. Consider any set $S \subset \mathbb{Z}_{n}-\{i,, j\}$. The excess

$$
\begin{aligned}
e(\nu, S \cup\{i\}) & =\sum_{k \in S} \nu_{k}+\nu_{i}-w(S \cup\{i\}) \\
& =\sum_{k \in S} \nu_{k}+\nu_{i}-w(S \cup\{j\}) \\
& <\sum_{k \in S} \nu_{k}+\nu_{j}-w(S \cup\{j\}) \\
& =e(\nu, S \cup\{j\})
\end{aligned}
$$

By transferring a small amount from player j to player i, the minimum excess will be increased, a contradiction to ν being the prenucleolus.
Thus, $\nu_{i}=\nu_{j}$ for any two players $i, j \in \mathbb{Z}_{n}$.

We Thought We Knew \mathbb{Z}_{n}

Conjecture. Suppose n is the product of 2 or more primes $p_{1}<\cdots<p_{m}$. The prenucleolus ν of the coalition game on \mathbb{Z}_{n} satisfies
$\nu_{i}=\left\{\begin{array}{ll}p_{1} /\left(p_{1}-1\right) & i \notin C \\ 0 & i \in C\end{array}\right.$ where C is the subgroup generated by p_{1}.

We Thought We Knew \mathbb{Z}_{n}

Conjecture. Suppose n is the product of 2 or more primes $p_{1}<\cdots<p_{m}$. The prenucleolus ν of the coalition game on \mathbb{Z}_{n} satisfies
$\nu_{i}=\left\{\begin{array}{ll}p_{1} /\left(p_{1}-1\right) & i \notin C \\ 0 & i \in C\end{array}\right.$ where C is the subgroup generated by p_{1}.
Proof. Let

- A be the set of generators,
- $B=\mathbb{Z}_{n}-A-C$,
- C_{0} be the subset of C whose elements are coprime with p_{2}, \ldots, p_{m}, and
- $\lambda=p_{1} /\left(p_{1}-1\right)$.

We Thought We Knew \mathbb{Z}_{n}

Conjecture. Suppose n is the product of 2 or more primes $p_{1}<\cdots<p_{m}$. The prenucleolus ν of the coalition game on \mathbb{Z}_{n} satisfies
$\nu_{i}=\left\{\begin{array}{ll}p_{1} /\left(p_{1}-1\right) & i \notin C \\ 0 & i \in C\end{array}\right.$ where C is the subgroup generated by p_{1}.
Proof. Let

- A be the set of generators,
- $B=\mathbb{Z}_{n}-A-C$,
- C_{0} be the subset of C whose elements are coprime with p_{2}, \ldots, p_{m}, and
- $\lambda=p_{1} /\left(p_{1}-1\right)$.

Observe that for ν as defined above,

- $\sum_{i=0}^{n-1} \nu_{i}=(n-|C|) \lambda=\left(n-n / p_{1}\right) \lambda=\left(n / p_{1}\right)\left(1-p_{1}\right) \lambda=n$.

We Thought We Knew \mathbb{Z}_{n}

Conjecture. Suppose n is the product of 2 or more primes $p_{1}<\cdots<p_{m}$. The prenucleolus ν of the coalition game on \mathbb{Z}_{n} satisfies
$\nu_{i}=\left\{\begin{array}{ll}p_{1} /\left(p_{1}-1\right) & i \notin C \\ 0 & i \in C\end{array}\right.$ where C is the subgroup generated by p_{1}.
Proof. Let

- A be the set of generators,
- $B=\mathbb{Z}_{n}-A-C$,
- C_{0} be the subset of C whose elements are coprime with p_{2}, \ldots, p_{m}, and
- $\lambda=p_{1} /\left(p_{1}-1\right)$.

Observe that for ν as defined above,

- $\sum_{i=0}^{n-1} \nu_{i}=(n-|C|) \lambda=\left(n-n / p_{1}\right) \lambda=\left(n / p_{1}\right)\left(1-p_{1}\right) \lambda=n$.
- If $i \in A$, then $w(\{i\})=n$ and $e(\nu,\{i\})=\lambda-n$.

We Thought We Knew \mathbb{Z}_{n}

Conjecture. Suppose n is the product of 2 or more primes $p_{1}<\cdots<p_{m}$. The prenucleolus ν of the coalition game on \mathbb{Z}_{n} satisfies
$\nu_{i}=\left\{\begin{array}{ll}p_{1} /\left(p_{1}-1\right) & i \notin C \\ 0 & i \in C\end{array}\right.$ where C is the subgroup generated by p_{1}.
Proof. Let

- A be the set of generators,
- $B=\mathbb{Z}_{n}-A-C$,
- C_{0} be the subset of C whose elements are coprime with p_{2}, \ldots, p_{m}, and
- $\lambda=p_{1} /\left(p_{1}-1\right)$.

Observe that for ν as defined above,

- $\sum_{i=0}^{n-1} \nu_{i}=(n-|C|) \lambda=\left(n-n / p_{1}\right) \lambda=\left(n / p_{1}\right)\left(1-p_{1}\right) \lambda=n$.
- If $i \in A$, then $w(\{i\})=n$ and $e(\nu,\{i\})=\lambda-n$.
- If $j \in B$ and $k \in C_{0}$, then $w(\{j, k\})=n$ and $e(\nu,\{j, k\})=\lambda-n$.

We Thought We Knew \mathbb{Z}_{n}

Conjecture. Suppose n is the product of 2 or more primes $p_{1}<\cdots<p_{m}$. The prenucleolus ν of the coalition game on \mathbb{Z}_{n} satisfies
$\nu_{i}=\left\{\begin{array}{ll}p_{1} /\left(p_{1}-1\right) & i \notin C \\ 0 & i \in C\end{array}\right.$ where C is the subgroup generated by p_{1}.
Proof. Let

- A be the set of generators,
- $B=\mathbb{Z}_{n}-A-C$,
- C_{0} be the subset of C whose elements are coprime with p_{2}, \ldots, p_{m}, and
- $\lambda=p_{1} /\left(p_{1}-1\right)$.

Observe that for ν as defined above,

- $\sum_{i=0}^{n-1} \nu_{i}=(n-|C|) \lambda=\left(n-n / p_{1}\right) \lambda=\left(n / p_{1}\right)\left(1-p_{1}\right) \lambda=n$.
- If $i \in A$, then $w(\{i\})=n$ and $e(\nu,\{i\})=\lambda-n$.
- If $j \in B$ and $k \in C_{0}$, then $w(\{j, k\})=n$ and $e(\nu,\{j, k\})=\lambda-n$.
- If S is any coalition, then $w() \leq n$ and $e(\nu, S) \geq \lambda-n$.

We Thought We Knew \mathbb{Z}_{n}

Conjecture. Suppose n is the product of 2 or more primes $p_{1}<\cdots<p_{m}$. The prenucleolus ν of the coalition game on \mathbb{Z}_{n} satisfies
$\nu_{i}=\left\{\begin{array}{ll}p_{1} /\left(p_{1}-1\right) & i \notin C \\ 0 & i \in C\end{array}\right.$ where C is the subgroup generated by p_{1}.
Proof. Let

- A be the set of generators,
- $B=\mathbb{Z}_{n}-A-C$,
- C_{0} be the subset of C whose elements are coprime with p_{2}, \ldots, p_{m}, and
- $\lambda=p_{1} /\left(p_{1}-1\right)$.

Observe that for ν as defined above,

- $\sum_{i=0}^{n-1} \nu_{i}=(n-|C|) \lambda=\left(n-n / p_{1}\right) \lambda=\left(n / p_{1}\right)\left(1-p_{1}\right) \lambda=n$.
- If $i \in A$, then $w(\{i\})=n$ and $e(\nu,\{i\})=\lambda-n$.
- If $j \in B$ and $k \in C_{0}$, then $w(\{j, k\})=n$ and $e(\nu,\{j, k\})=\lambda-n$.
- If S is any coalition, then $w() \leq n$ and $e(\nu, S) \geq \lambda-n$.

Suppose x is an allocation that maximizes the minimum excess.

We Thought We Knew \mathbb{Z}_{n}

Conjecture. Suppose n is the product of 2 or more primes $p_{1}<\cdots<p_{m}$. The prenucleolus ν of the coalition game on \mathbb{Z}_{n} satisfies
$\nu_{i}=\left\{\begin{array}{ll}p_{1} /\left(p_{1}-1\right) & i \notin C \\ 0 & i \in C\end{array}\right.$ where C is the subgroup generated by p_{1}.
Proof. By $e(x, S) \geq \lambda-n$ for all coalitions S and Theorem 1 :
Inequalities
$\begin{array}{ll}x_{i} \geq \lambda, & i \in A \\ x_{j}+x_{k} \geq \lambda, & j \in B, k \in C_{0} \\ x_{i} \geq 0, & k \in C_{0} \\ x_{i} \geq 0, & k \in C-C_{0}\end{array}$

We Thought We Knew \mathbb{Z}_{n}

Conjecture. Suppose n is the product of 2 or more primes $p_{1}<\cdots<p_{m}$. The prenucleolus ν of the coalition game on \mathbb{Z}_{n} satisfies
$\nu_{i}=\left\{\begin{array}{ll}p_{1} /\left(p_{1}-1\right) & i \notin C \\ 0 & i \in C\end{array}\right.$ where C is the subgroup generated by p_{1}.
Proof. By $e(x, S) \geq \lambda-n$ for all coalitions S and Theorem 1 :

Inequalities		A	B	C_{0}	$C-C_{0}$	number	
$x_{i} \geq \lambda$,	$i \in A$	1	0	0	0	$\|A\|$	
$x_{j}+x_{k} \geq \lambda, j \in B, k \in C_{0}$	0	$\left\|C_{0}\right\|$	$\|B\|$	0	$\left\|B \\| C_{0}\right\|$		
$x_{i} \geq 0$,	$k \in C_{0}$	0	0	1	0	$\left\|C_{0}\right\|$	
$x_{i} \geq 0$,	$k \in C-C_{0}$	0	0	0	1	$\left\|C-C_{0}\right\|$	

We Thought We Knew \mathbb{Z}_{n}

Conjecture. Suppose n is the product of 2 or more primes $p_{1}<\cdots<p_{m}$.
The prenucleolus ν of the coalition game on \mathbb{Z}_{n} satisfies
$\nu_{i}=\left\{\begin{array}{ll}p_{1} /\left(p_{1}-1\right) & i \notin C \\ 0 & i \in C\end{array}\right.$ where C is the subgroup generated by p_{1}.
Proof. By $e(x, S) \geq \lambda-n$ for all coalitions S and Theorem 1 :

Inequalities		A	B	C_{0}	$C-C_{0}$	number	weight	
$x_{i} \geq \lambda$,	$i \in A$	1	0	0	0	$\|A\|$	1	
$x_{j}+x_{k} \geq \lambda, j \in B, k \in C_{0}$	0	$\left\|C_{0}\right\|$	$\|B\|$	0	$\left\|B \\| C_{0}\right\|$	$1 /\left\|C_{0}\right\|$		
$x_{i} \geq 0$,	$k \in C_{0}$	0	0	1	0	$\left\|C_{0}\right\|$	$1-\|B\| /\left\|C_{0}\right\|$	
$x_{i} \geq 0$,	$k \in C-C_{0}$	0	0	0	1	$\left\|C-C_{0}\right\|$	1	

We Thought We Knew \mathbb{Z}_{n}

Conjecture. Suppose n is the product of 2 or more primes $p_{1}<\cdots<p_{m}$.
The prenucleolus ν of the coalition game on \mathbb{Z}_{n} satisfies
$\nu_{i}=\left\{\begin{array}{ll}p_{1} /\left(p_{1}-1\right) & i \notin C \\ 0 & i \in C\end{array}\right.$ where C is the subgroup generated by p_{1}.
Proof. By $e(x, S) \geq \lambda-n$ for all coalitions S and Theorem 1 :

Inequalities		A	B	C_{0}	$C-C_{0}$	number	weight
$x_{i} \geq \lambda$,	$i \in A$	1	0	0	0	$\|A\|$	1
$x_{j}+x_{k} \geq \lambda, j \in B, k \in C_{0}$	0	$\left\|C_{0}\right\|$	$\|B\|$	0	$\|B\|\left\|C_{0}\right\|$	$1 /\left\|C_{0}\right\|$	
$x_{i} \geq 0$,	$k \in C_{0}$	0	0	1	0	$\left\|C_{0}\right\|$	$1-\|B\| /\left\|C_{0}\right\|$
$x_{i} \geq 0$,	$k \in C-C_{0}$	0	0	0	1	$\left\|C-C_{0}\right\|$	1

Multiplying each inequality of each type by the corresponding weight and summing, we obtain $n=\sum_{i=0}^{n} x_{i} \geq(|A|+|B|) \lambda=n$.

We Thought We Knew \mathbb{Z}_{n}

Conjecture. Suppose n is the product of 2 or more primes $p_{1}<\cdots<p_{m}$. The prenucleolus ν of the coalition game on \mathbb{Z}_{n} satisfies
$\nu_{i}=\left\{\begin{array}{ll}p_{1} /\left(p_{1}-1\right) & i \notin C \\ 0 & i \in C\end{array}\right.$ where C is the subgroup generated by p_{1}.
Proof. By $e(x, S) \geq \lambda-n$ for all coalitions S and Theorem 1 :

Inequalities		A	B	C_{0}	$C-C_{0}$	number	weight
$x_{i} \geq \lambda$,	$i \in A$	1	0	0	0	$\|A\|$	1
$x_{j}+x_{k} \geq \lambda, j \in B, k \in C_{0}$	0	$\left\|C_{0}\right\|$	$\|B\|$	0	$\|B\|\left\|C_{0}\right\|$	$1 /\left\|C_{0}\right\|$	
$x_{i} \geq 0$,	$k \in C_{0}$	0	0	1	0	$\left\|C_{0}\right\|$	$1-\|B\| /\left\|C_{0}\right\|$
$x_{i} \geq 0$,	$k \in C-C_{0}$	0	0	0	1	$\left\|C-C_{0}\right\|$	1

Multiplying each inequality of each type by the corresponding weight and summing, we obtain $n=\sum_{i=0}^{n} x_{i} \geq(|A|+|B|) \lambda=n$. All of the inequalities must hold with equality.

We Thought We Knew \mathbb{Z}_{n}

Conjecture. Suppose n is the product of 2 or more primes $p_{1}<\cdots<p_{m}$. The prenucleolus ν of the coalition game on \mathbb{Z}_{n} satisfies
$\nu_{i}=\left\{\begin{array}{ll}p_{1} /\left(p_{1}-1\right) & i \notin C \\ 0 & i \in C\end{array}\right.$ where C is the subgroup generated by p_{1}.
Proof. By $e(x, S) \geq \lambda-n$ for all coalitions S and Theorem 1 :

Inequalities		A	B	C_{0}	$C-C_{0}$	number	weight
$x_{i} \geq \lambda$,	$i \in A$	1	0	0	0	$\|A\|$	1
$x_{j}+x_{k} \geq \lambda, j \in B, k \in C_{0}$	0	$\left\|C_{0}\right\|$	$\|B\|$	0	$\|B\|\left\|C_{0}\right\|$	$1 /\left\|C_{0}\right\|$	
$x_{i} \geq 0$,	$k \in C_{0}$	0	0	1	0	$\left\|C_{0}\right\|$	$1-\|B\| /\left\|C_{0}\right\|$
$x_{i} \geq 0$,	$k \in C-C_{0}$	0	0	0	1	$\left\|C-C_{0}\right\|$	1

Multiplying each inequality of each type by the corresponding weight and summing, we obtain $n=\sum_{i=0}^{n} x_{i} \geq(|A|+|B|) \lambda=n$. All of the inequalities must hold with equality. Hence, $x_{i}=0$ for all $i \in C$,

We Thought We Knew \mathbb{Z}_{n}

Conjecture. Suppose n is the product of 2 or more primes $p_{1}<\cdots<p_{m}$. The prenucleolus ν of the coalition game on \mathbb{Z}_{n} satisfies
$\nu_{i}=\left\{\begin{array}{ll}p_{1} /\left(p_{1}-1\right) & i \notin C \\ 0 & i \in C\end{array}\right.$ where C is the subgroup generated by p_{1}.
Proof. By $e(x, S) \geq \lambda-n$ for all coalitions S and Theorem 1 :

Inequalities		A	B	C_{0}	$C-C_{0}$	number	weight	
$x_{i} \geq \lambda$,	$i \in A$	1	0	0	0	$\|A\|$	1	
$x_{j}+x_{k} \geq \lambda, j \in B, k \in C_{0}$	0	$\left\|C_{0}\right\|$	$\|B\|$	0	$\left\|B \\| C_{0}\right\|$	$1 /\left\|C_{0}\right\|$		
$x_{i} \geq 0$,	$k \in C_{0}$	0	0	1	0	$\left\|C_{0}\right\|$	$1-\|B\| /\left\|C_{0}\right\|$	
$x_{i} \geq 0$,	$k \in C-C_{0}$	0	0	0	1	$\left\|C-C_{0}\right\|$	1	

Multiplying each inequality of each type by the corresponding weight and summing, we obtain $n=\sum_{i=0}^{n} x_{i} \geq(|A|+|B|) \lambda=n$. All of the inequalities must hold with equality. Hence, $x_{i}=0$ for all $i \in C$, and $x_{i}=\lambda$ for all $i \in A \cup B$.

We Thought We Knew \mathbb{Z}_{n}

Conjecture. Suppose n is the product of 2 or more primes $p_{1}<\cdots<p_{m}$. The prenucleolus ν of the coalition game on \mathbb{Z}_{n} satisfies
$\nu_{i}=\left\{\begin{array}{ll}p_{1} /\left(p_{1}-1\right) & i \notin C \\ 0 & i \in C\end{array}\right.$ where C is the subgroup generated by p_{1}.
Proof. By $e(x, S) \geq \lambda-n$ for all coalitions S and Theorem 1 :

Inequalities		A	B	C_{0}	$C-C_{0}$	number	weight	
$x_{i} \geq \lambda$,	$i \in A$	1	0	0	0	$\|A\|$	1	
$x_{j}+x_{k} \geq \lambda, j \in B, k \in C_{0}$	0	$\left\|C_{0}\right\|$	$\|B\|$	0	$\left\|B \\| C_{0}\right\|$	$1 /\left\|C_{0}\right\|$		
$x_{i} \geq 0$,	$k \in C_{0}$	0	0	1	0	$\left\|C_{0}\right\|$	$1-\|B\| /\left\|C_{0}\right\|$	
$x_{i} \geq 0$,	$k \in C-C_{0}$	0	0	0	1	$\left\|C-C_{0}\right\|$	1	

Multiplying each inequality of each type by the corresponding weight and summing, we obtain $n=\sum_{i=0}^{n} x_{i} \geq(|A|+|B|) \lambda=n$. All of the inequalities must hold with equality. Hence, $x_{i}=0$ for all $i \in C$, and $x_{i}=\lambda$ for all $i \in A \cup B$. Thus, $x=\nu$.

We Thought We Knew \mathbb{Z}_{n}

Conjecture. Suppose n is the product of 2 or more primes $p_{1}<\cdots<p_{m}$.
The prenucleolus ν of the coalition game on \mathbb{Z}_{n} satisfies
$\nu_{i}=\left\{\begin{array}{ll}p_{1} /\left(p_{1}-1\right) & i \notin C \\ 0 & i \in C\end{array}\right.$ where C is the subgroup generated by p_{1}.
Proof. By $e(x, S) \geq \lambda-n$ for all coalitions S and Theorem 1 :

Inequalities		A	B	C_{0}	$C-C_{0}$	number	weight	
$x_{i} \geq \lambda$,	$i \in A$	1	0	0	0	$\|A\|$	1	
$x_{j}+x_{k} \geq \lambda, j \in B, k \in C_{0}$	0	$\left\|C_{0}\right\|$	$\|B\|$	0	$\left\|B \\| C_{0}\right\|$	$1 /\left\|C_{0}\right\|$		
$x_{i} \geq 0$,	$k \in C_{0}$	0	0	1	0	$\left\|C_{0}\right\|$	$1-\|B\| /\left\|C_{0}\right\|$	
$x_{i} \geq 0$,	$k \in C-C_{0}$	0	0	0	1	$\left\|C-C_{0}\right\|$	1	

Multiplying each inequality of each type by the corresponding weight and summing, we obtain $n=\sum_{i=0}^{n} x_{i} \geq(|A|+|B|) \lambda=n$. All of the inequalities must hold with equality. Hence, $x_{i}=0$ for all $i \in C$, and $x_{i}=\lambda$ for all $i \in A \cup B$. Thus, $x=\nu$.
This works as long as $1-|B| /\left|C_{0}\right|>0$ or $\left|C_{0}\right|>|B|$.

The End of Summer Conjecture

For a group \mathbb{Z}_{n} with addition modulo n, let

- A be the set of generators,
- C be the largest proper subgroup of G generated by the smallest prime factor p_{1} of $|G|$, and
- B be the set of all the elements not in A or C.

The prenucleolus ν satisfies

$$
\begin{array}{ccccc}
\text { Condition } & \nu_{i}, i \in A & \nu_{j}, j \in B & \nu_{k}, k \in C-\{0\} & n u_{0} \\
\hline|B|<|C| & \lambda & \lambda & 0 & 0 \\
|B|>|C| & \lambda & \lambda / 2 & \lambda / 2 & 0 \\
|B|=|C| & & & \text { Impossible }- &
\end{array}
$$

where λ is chosen so that ν is an allocation.

Possible Research Directions

Possible Research Directions

- Try another class of groups.

Possible Research Directions

- Try another class of groups.
- Consider the Shapley value instead of the prenucleolus.

Possible Research Directions

- Try another class of groups.
- Consider the Shapley value instead of the prenucleolus.
- Define the coalition game differently.

Possible Research Directions

- Try another class of groups.
- Consider the Shapley value instead of the prenucleolus.
- Define the coalition game differently.
- Is there some direction that will provide new insights into group theory or game theory?

