Game and Group Theories Together

David Housman and Ebtihal Abdelaziz

Goshen College

Fall 2022

Housman & Abdelaziz (Goshen College) Game and Group Theories Together

3 N 3

Coalition Game

A coalition game consists of a set N of players and a real-valued worth w(S) for each coalition (nonempty subset) S of players.

A coalition game consists of a set N of players and a real-valued worth w(S) for each coalition (nonempty subset) S of players.

An allocation is a vector x of payoffs x_i to each player $i \in N$ satisfying $\sum_{i \in N} x_i = w(N)$.

S	w(S)	Excess for		
$\{1, 2, 3\}$	60	(26, 23, 11)		
$\{1, 2\}$	48	26 + 23 - 48	=	1
$\{1, 3\}$	24	26+11-24	=	13
$\{2, 3\}$	18	23 + 11 - 18	=	16
$\{1\}$	0	26 - 0	=	26
{2}	0	23 - 0	=	23
{3}	0	11-0	=	11

A coalition game consists of a set N of players and a real-valued worth w(S) for each coalition (nonempty subset) S of players.

An allocation is a vector x of payoffs x_i to each player $i \in N$ satisfying $\sum_{i \in N} x_i = w(N)$.

w(S)	Excess for	Excess for		
60	(26, 23, 11)	(29, 25, 6)		
48	1	29 + 25 - 48	=	6
24	13	29 + 6 - 24	=	11
18	16	25 + 6 - 18	=	13
0	26	29 - 0	=	29
0	23	25 - 0	=	25
0	11	6 - 0	=	6
	w(S) 60 48 24 18 0 0 0	$\begin{array}{ccc} w(S) & \text{Excess for} \\ 60 & (26, 23, 11) \\ 48 & 1 \\ 24 & 13 \\ 18 & 16 \\ 0 & 26 \\ 0 & 23 \\ 0 & 11 \end{array}$	w(S)Excess forExcess for60 $(26, 23, 11)$ $(29, 25, 6)$ 481 $29 + 25 - 48$ 2413 $29 + 6 - 24$ 1816 $25 + 6 - 18$ 026 $29 - 0$ 023 $25 - 0$ 011 $6 - 0$	w(S)Excess forExcess for60 $(26, 23, 11)$ $(29, 25, 6)$ 481 $29 + 25 - 48 =$ 2413 $29 + 6 - 24 =$ 1816 $25 + 6 - 18 =$ 026 $29 - 0 =$ 023 $25 - 0 =$ 011 $6 - 0 =$

A coalition game consists of a set N of players and a real-valued worth w(S) for each coalition (nonempty subset) S of players.

An allocation is a vector x of payoffs x_i to each player $i \in N$ satisfying $\sum_{i \in N} x_i = w(N)$.

S	w(S)	Excess for	Excess for	Excess for		
$\{1, 2, 3\}$	60	(26, 23, 11)	(29, 25, 6)	(30, 24, 6)		
$\{1, 2\}$	48	1	6	30 + 24 - 48	=	6
$\{1, 3\}$	24	13	11	30 + 6 - 24	=	12
$\{2, 3\}$	18	16	13	24 + 6 - 18	=	12
$\{1\}$	0	26	29	30 - 0	=	30
{2}	0	23	25	24 - 0	=	24
{3 }	0	11	6	6 - 0	=	6

A coalition game consists of a set N of players and a real-valued worth w(S) for each coalition (nonempty subset) S of players.

An allocation is a vector x of payoffs x_i to each player $i \in N$ satisfying $\sum_{i \in N} x_i = w(N)$.

S	w(S)	Excess for	Excess for	Excess for
$\{1, 2, 3\}$	60	(26, 23, 11)	(29, 25, 6)	(30, 24, 6)
$\{1, 2\}$	48	1	6	6
$\{1, 3\}$	24	13	11	12
{2,3}	18	16	13	12
$\{1\}$	0	26	29	30
{2}	0	23	25	24
{3 }	0	11	6	6

S	w(S)	Excess for
$\{1, 2, 3\}$	60	(30, 24, 6)
$\{1, 2\}$	48	6
$\{1, 3\}$	24	12
$\{2, 3\}$	18	12
$\{1\}$	0	30
{2}	0	24
{3 }	0	6

イロト イヨト イヨト イヨト

Ξ.

S	w(S)	Excess for
$\{1, 2, 3\}$	60	(30, 24, 6)
$\{1, 2\}$	48	6
$\{1, 3\}$	24	12
$\{2, 3\}$	18	12
$\{1\}$	0	30
{2}	0	24
{3}	0	6

If x is the prenucleolus, then all excesses must be at least 6.

æ

S	w(S)	Excess for
$\{1, 2, 3\}$	60	(30, 24, 6)
$\{1, 2\}$	48	6
$\{1,3\}$	24	12
$\{2, 3\}$	18	12
$\{1\}$	0	30
{2}	0	24
{3}	0	6

If x is the prenucleolus, then all excesses must be at least 6. In particular,

$$\begin{array}{rrrr} x_1 + x_2 + x_3 &= 60 \\ x_1 + x_2 &- 48 \geq & 6 \\ x_3 - & 0 \geq & 6 \end{array}$$

æ

S	w(S)	Excess for
$\{1, 2, 3\}$	60	(30, 24, 6)
$\{1, 2\}$	48	6
$\{1, 3\}$	24	12
$\{2, 3\}$	18	12
$\{1\}$	0	30
{2}	0	24
{3}	0	6

If x is the prenucleolus, then all excesses must be at least 6. In particular,

 $\begin{array}{rrrr} x_1 + x_2 + x_3 &= 60 \\ x_1 + x_2 &- 48 \geq & 6 \\ x_3 - & 0 \geq & 6 \end{array}$

S	w(S)	Excess for
$\{1, 2, 3\}$	60	(30, 24, 6)
$\{1,2\}$	48	6
$\{1, 3\}$	24	12
$\{2, 3\}$	18	12
$\{1\}$	0	30
{2}	0	24
{3}	0	6

Hence, the inequalities must hold with equality.

If x is the prenucleolus, then all excesses must be at least 6. In particular,

 $\begin{array}{rrrr} x_1 + x_2 + x_3 &= 60 \\ x_1 + x_2 &- 48 \geq & 6 \\ x_3 - & 0 \geq & 6 \end{array}$

S	w(S)	Excess for
$\{1, 2, 3\}$	60	(30, 24, 6)
$\{1, 2\}$	48	6
$\{1, 3\}$	24	12
$\{2, 3\}$	18	12
$\{1\}$	0	30
{2}	0	24
{3}	0	6

Hence, the inequalities must hold with equality.

Thus, $x_1 + x_2 = 54$ and $x_3 = 6$.

If x is the prenucleolus, then all excesses must be at least 6. In particular,

 $\begin{array}{rrrr} x_1 + x_2 + x_3 &= 60 \\ x_1 + x_2 &- 48 \geq & 6 \\ x_3 - & 0 \geq & 6 \end{array}$

S	w(S)	Excess for
$\{1, 2, 3\}$	60	(30, 24, 6)
$\{1, 2\}$	48	6
$\{1, 3\}$	24	12
$\{2, 3\}$	18	12
$\{1\}$	0	30
{2}	0	24
{3}	0	6

Hence, the inequalities must hold with equality.

Thus, $x_1 + x_2 = 54$ and $x_3 = 6$.

Furthermore, all remaining excesses must be at least 12.

If x is the prenucleolus, then all excesses must be at least 6. In particular,

 $\begin{array}{rrrr} x_1 + x_2 + x_3 &= 60 \\ x_1 + x_2 &- 48 \geq & 6 \\ x_3 - & 0 \geq & 6 \end{array}$

S	w(S)	Excess for
$\{1, 2, 3\}$	60	(30, 24, 6)
$\{1, 2\}$	48	6
$\{1,3\}$	24	12
$\{2, 3\}$	18	12
$\{1\}$	0	30
{2}	0	24
{3}	0	6

If x is the prenucleolus, then all excesses must be at least 6. In particular,

 $\begin{array}{rrrr} x_1 + x_2 + x_3 &= 60 \\ x_1 + x_2 &- 48 \geq & 6 \\ x_3 - & 0 \geq & 6 \end{array}$

Addition of the two inequalities and use of the equality yields $12 \ge 12$.

Housman & Abdelaziz (Goshen College)

Hence, the inequalities must hold with equality.

Thus, $x_1 + x_2 = 54$ and $x_3 = 6$.

Furthermore, all remaining excesses must be at least 12. In particular,

$$\begin{array}{rl} x_1 + x_2 & = 54 \\ x_3 & = 6 \\ x_1 + & x_3 - 24 \geq 12 \\ x_2 + x_3 - 18 \geq 12 \end{array}$$

Fall 2022

7/15

S	w(S)	Excess for
$\{1, 2, 3\}$	60	(30, 24, 6)
$\{1, 2\}$	48	6
$\{1, 3\}$	24	12
$\{2, 3\}$	18	12
$\{1\}$	0	30
{2}	0	24
{3}	0	6

If x is the prenucleolus, then all excesses must be at least 6. In particular,

$$\begin{array}{rrrr} x_1 + x_2 + x_3 &= 60 \\ x_1 + x_2 &- 48 \geq & 6 \\ x_3 - & 0 \geq & 6 \end{array}$$

Addition of the two inequalities and use of the equality yields $12 \ge 12$.

Hence, the inequalities must hold with equality.

Thus, $x_1 + x_2 = 54$ and $x_3 = 6$.

Furthermore, all remaining excesses must be at least 12. In particular,

$$\begin{array}{rl} x_1 + x_2 & = 54 \\ x_3 & = 6 \\ x_1 + & x_3 - 24 \ge 12 \\ x_2 + x_3 - 18 \ge 12 \end{array}$$

Addition of the two inequalities and use of the two equalities yields

 $54 + 2(6) - 24 - 18 \geq 12 + 12.$

S	w(S)	Excess for
$\{1, 2, 3\}$	60	(30, 24, 6)
$\{1, 2\}$	48	6
$\{1, 3\}$	24	12
$\{2, 3\}$	18	12
$\{1\}$	0	30
{2}	0	24
{3}	0	6

If x is the prenucleolus, then all excesses must be at least 6. In particular,

$$\begin{array}{rrrr} x_1 + x_2 + x_3 &= 60 \\ x_1 + x_2 &- 48 \geq & 6 \\ x_3 - & 0 \geq & 6 \end{array}$$

Addition of the two inequalities and use of the equality yields $12 \ge 12$.

Hence, the inequalities must hold with equality.

Thus, $x_1 + x_2 = 54$ and $x_3 = 6$.

Furthermore, all remaining excesses must be at least 12. In particular,

$$x_1 + x_2 = 54 x_3 = 6 x_1 + x_3 - 24 \ge 12 x_2 + x_3 - 18 \ge 12$$

Addition of the two inequalities and use of the two equalities yields

 $54 + 2(6) - 24 - 18 \ge 12 + 12.$

As before, the inequalities must hold with equality.

S	w(S)	Excess for
$\{1, 2, 3\}$	60	(30, 24, 6)
$\{1, 2\}$	48	6
$\{1, 3\}$	24	12
$\{2, 3\}$	18	12
$\{1\}$	0	30
{2}	0	24
{3}	0	6

If x is the prenucleolus, then all excesses must be at least 6. In particular,

Addition of the two inequalities and use of the equality yields $12 \ge 12$.

Hence, the inequalities must hold with equality.

Thus, $x_1 + x_2 = 54$ and $x_3 = 6$.

Furthermore, all remaining excesses must be at least 12. In particular,

$$\begin{array}{rl} x_1 + x_2 & = 54 \\ x_3 & = 6 \\ x_1 + & x_3 - 24 \geq 12 \\ x_2 + x_3 - 18 \geq 12 \end{array}$$

Addition of the two inequalities and use of the two equalities yields

 $54 + 2(6) - 24 - 18 \ge 12 + 12.$

As before, the inequalities must hold with equality.

Thus, $x_1 = 30$ and $x_2 = 24$.

Housman & Abdelaziz (Goshen College)

A group is a set G and an operation * satisfying

• Closed:
$$(\forall x, y \in G)(x * y \in G)$$
.

- Identity: $(\exists e \in G)(\forall x \in G)(x * e = e * x = x).$
- Inverses: $(\forall x \in G)(\exists y \in G)(x * y = y * x = 0).$
- Associative: $(\forall x, y, z \in G)((x * y) * z = x * (y * z)).$

Example 1. $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ with addition modulo n.

Example 2. Symmetries of a regular polygon with composition.

Example 3. Permutations of \mathbb{Z}_n with composition.

Definition. The *coalition game on the group* (G, *) consists of the set of players G and the worth w(S) being the number of elements in the smallest subgroup containing S.

Definition. The *coalition game on the group* (G, *) consists of the set of players G and the worth w(S) being the number of elements in the smallest subgroup containing S.

Definition. The *coalition game on the group* (G, *) consists of the set of players G and the worth w(S) being the number of elements in the smallest subgroup containing S.

Example. The coalition game on the group $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ with addition modulo 6 has 6 players and $2^6 - 1 = 63$ coalitions for which

$$w(S) = \begin{cases} 1, & \text{if } S = \{0\} \\ \\ \end{cases}$$

9/15

Definition. The *coalition game on the group* (G, *) consists of the set of players G and the worth w(S) being the number of elements in the smallest subgroup containing S.

$$w(S) = \begin{cases} 1, & \text{if } S = \{0\} \\ 2, & \text{if } S = \{3\} \text{ or } \{0,3\} \end{cases}$$

Definition. The *coalition game on the group* (G, *) consists of the set of players G and the worth w(S) being the number of elements in the smallest subgroup containing S.

$$w(S) = \begin{cases} 1, & \text{if } S = \{0\} \\ 2, & \text{if } S = \{3\} \text{ or } \{0,3\} \\ 3, & \text{if } \{0\} \neq S \subset \{0,2,4\} \end{cases}$$

Definition. The *coalition game on the group* (G, *) consists of the set of players G and the worth w(S) being the number of elements in the smallest subgroup containing S.

$$w(S) = \begin{cases} 1, & \text{if } S = \{0\} \\ 2, & \text{if } S = \{3\} \text{ or } \{0,3\} \\ 3, & \text{if } \{0\} \neq S \subset \{0,2,4\} \\ 6, & \text{otherwise} \end{cases}$$

Definition. The *coalition game on the group* (G, *) consists of the set of players G and the worth w(S) being the number of elements in the smallest subgroup containing S.

Example. The coalition game on the group $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ with addition modulo 6 has 6 players and $2^6 - 1 = 63$ coalitions for which

$$w(S) = \begin{cases} 1, & \text{if } S = \{0\} \\ 2, & \text{if } S = \{3\} \text{ or } \{0,3\} \\ 3, & \text{if } \{0\} \neq S \subset \{0,2,4\} \\ 6, & \text{otherwise} \end{cases}$$

The prenucleolus ν satisfies $\nu_0 = \nu_2 = \nu_4 = 0$ and $\nu_1 = \nu_3 = \nu_5 = 2$.

Definition. The *coalition game on the group* (G, *) consists of the set of players G and the worth w(S) being the number of elements in the smallest subgroup containing S.

Example. The coalition game on the group $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ with addition modulo 6 has 6 players and $2^6 - 1 = 63$ coalitions for which

$$w(S) = \begin{cases} 1, & \text{if } S = \{0\} \\ 2, & \text{if } S = \{3\} \text{ or } \{0,3\} \\ 3, & \text{if } \{0\} \neq S \subset \{0,2,4\} \\ 6, & \text{otherwise} \end{cases}$$

The prenucleolus ν satisfies $\nu_0 = \nu_2 = \nu_4 = 0$ and $\nu_1 = \nu_3 = \nu_5 = 2$.

Proof. The minimum excess for ν is -4.

Definition. The *coalition game on the group* (G, *) consists of the set of players G and the worth w(S) being the number of elements in the smallest subgroup containing S.

Example. The coalition game on the group $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ with addition modulo 6 has 6 players and $2^6 - 1 = 63$ coalitions for which

$$w(S) = \begin{cases} 1, & \text{if } S = \{0\} \\ 2, & \text{if } S = \{3\} \text{ or } \{0,3\} \\ 3, & \text{if } \{0\} \neq S \subset \{0,2,4\} \\ 6, & \text{otherwise} \end{cases}$$

The prenucleolus ν satisfies $\nu_0 = \nu_2 = \nu_4 = 0$ and $\nu_1 = \nu_3 = \nu_5 = 2$.

Proof. The minimum excess for ν is -4. So, if x is the prenucleolus, then $x_1, x_3, x_5 \ge 2$.

Definition. The *coalition game on the group* (G, *) consists of the set of players G and the worth w(S) being the number of elements in the smallest subgroup containing S.

Example. The coalition game on the group $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ with addition modulo 6 has 6 players and $2^6 - 1 = 63$ coalitions for which

$$w(S) = \begin{cases} 1, & \text{if } S = \{0\} \\ 2, & \text{if } S = \{3\} \text{ or } \{0,3\} \\ 3, & \text{if } \{0\} \neq S \subset \{0,2,4\} \\ 6, & \text{otherwise} \end{cases}$$

The prenucleolus ν satisfies $\nu_0 = \nu_2 = \nu_4 = 0$ and $\nu_1 = \nu_3 = \nu_5 = 2$.

Proof. The minimum excess for ν is -4. So, if x is the prenucleolus, then $x_1, x_3, x_5 \ge 2$. By Theorem 1, $x_0, x_2, x_4 \ge 0$.

Definition. The *coalition game on the group* (G, *) consists of the set of players G and the worth w(S) being the number of elements in the smallest subgroup containing S.

Example. The coalition game on the group $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ with addition modulo 6 has 6 players and $2^6 - 1 = 63$ coalitions for which

$$w(S) = \begin{cases} 1, & \text{if } S = \{0\} \\ 2, & \text{if } S = \{3\} \text{ or } \{0,3\} \\ 3, & \text{if } \{0\} \neq S \subset \{0,2,4\} \\ 6, & \text{otherwise} \end{cases}$$

The prenucleolus ν satisfies $\nu_0 = \nu_2 = \nu_4 = 0$ and $\nu_1 = \nu_3 = \nu_5 = 2$.

Proof. The minimum excess for ν is -4. So, if x is the prenucleolus, then $x_1, x_3, x_5 \ge 2$. By Theorem 1, $x_0, x_2, x_4 \ge 0$. Combining these inequalities with $x_0 + x_1 + x_2 + x_3 + x_4 + x_5 = 6$, we obtain $x = \nu$.

Theorem 1. If ν is the prenucleolus for a coalition game on the group (G, *), then $\nu_i \ge 0$ for all players $i \in G$.

Theorem 1. If ν is the prenucleolus for a coalition game on the group (G, *), then $\nu_i \ge 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_i < 0$ for some $i \in G$.

Theorem 1. If ν is the prenucleolus for a coalition game on the group (G, *), then $\nu_i \ge 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_i < 0$ for some $i \in G$. Consider any coalition *S* not containing *i*.

Theorem 1. If ν is the prenucleolus for a coalition game on the group (G, *), then $\nu_i \ge 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_i < 0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S) = \sum_{i \in S} \nu_i - w(S)$

Theorem 1. If ν is the prenucleolus for a coalition game on the group (G, *), then $\nu_i \ge 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_i < 0$ for some $i \in G$. Consider any coalition *S* not containing *i*. Then the excess $e(\nu, S) = \sum_{j \in S} \nu_j - w(S)$ > $\sum_{j \in S} \nu_j + \nu_i - w(S \cup \{i\})$

Theorem 1. If ν is the prenucleolus for a coalition game on the group (G, *), then $\nu_i \ge 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_i < 0$ for some $i \in G$. Consider any coalition *S* not containing *i*. Then the excess $e(\nu, S) = \sum_{j \in S} \nu_j - w(S)$ > $\sum_{i \in S} \nu_i + \nu_i - w(S \cup \{i\})$ which is the excess $e(\nu, S \cup \{i\})$.

Theorem 1. If ν is the prenucleolus for a coalition game on the group (G, *), then $\nu_i \ge 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_i < 0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S) = \sum_{j \in S} \nu_j - w(S)$ $> \sum_{j \in S} \nu_j + \nu_i - w(S \cup \{i\})$ which is the excess $e(\nu, S \cup \{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased,
Theorem 1. If ν is the prenucleolus for a coalition game on the group (G, *), then $\nu_i \ge 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_i < 0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S) = \sum_{j \in S} \nu_j - w(S)$ $> \sum_{j \in S} \nu_j + \nu_i - w(S \cup \{i\})$ which is the excess $e(\nu, S \cup \{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Theorem 1. If ν is the prenucleolus for a coalition game on the group (G, *), then $\nu_i \ge 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_i < 0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S) = \sum_{j \in S} \nu_j - w(S)$ $> \sum_{j \in S} \nu_j + \nu_i - w(S \cup \{i\})$ which is the excess $e(\nu, S \cup \{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Theorem 2. If ν is the prenucleolus for a coalition game on the non-trivial group (G, *), then $\nu_e = 0$ for the identity element e.

Proof. Suppose to the contrary that $\nu_e > 0$.

10/15

く 白 ト く ヨ ト く ヨ ト

Theorem 1. If ν is the prenucleolus for a coalition game on the group (G, *), then $\nu_i \ge 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_i < 0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S) = \sum_{j \in S} \nu_j - w(S)$ $> \sum_{j \in S} \nu_j + \nu_i - w(S \cup \{i\})$ which is the excess $e(\nu, S \cup \{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Theorem 2. If ν is the prenucleolus for a coalition game on the non-trivial group (*G*, *), then $\nu_e = 0$ for the identity element *e*.

Proof. Suppose to the contrary that $\nu_e > 0$. Consider any coalition S not containing *e*.

10/15

Theorem 1. If ν is the prenucleolus for a coalition game on the group (G, *), then $\nu_i \ge 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_i < 0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S) = \sum_{j \in S} \nu_j - w(S)$ $> \sum_{j \in S} \nu_j + \nu_i - w(S \cup \{i\})$ which is the excess $e(\nu, S \cup \{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Theorem 2. If ν is the prenucleolus for a coalition game on the non-trivial group (G, *), then $\nu_e = 0$ for the identity element e.

Proof. Suppose to the contrary that $\nu_e > 0$. Consider any coalition S not containing e. The excess $e(\nu, S) = \sum_{j \in S} \nu_j - w(S)$

Theorem 1. If ν is the prenucleolus for a coalition game on the group (G, *), then $\nu_i \ge 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_i < 0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S) = \sum_{j \in S} \nu_j - w(S)$ $> \sum_{j \in S} \nu_j + \nu_i - w(S \cup \{i\})$ which is the excess $e(\nu, S \cup \{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Theorem 2. If ν is the prenucleolus for a coalition game on the non-trivial group (G, *), then $\nu_e = 0$ for the identity element e.

Proof. Suppose to the contrary that $\nu_e > 0$. Consider any coalition *S* not containing *e*. The excess $e(\nu, S) = \sum_{j \in S} \nu_j - w(S)$ which is $\langle \sum_{j \in S} \nu_j + \nu_e - w(S \cup \{i\})$

Theorem 1. If ν is the prenucleolus for a coalition game on the group (G, *), then $\nu_i \ge 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_i < 0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S) = \sum_{j \in S} \nu_j - w(S)$ $> \sum_{j \in S} \nu_j + \nu_i - w(S \cup \{i\})$ which is the excess $e(\nu, S \cup \{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Theorem 2. If ν is the prenucleolus for a coalition game on the non-trivial group (G, *), then $\nu_e = 0$ for the identity element e.

Proof. Suppose to the contrary that $\nu_e > 0$. Consider any coalition *S* not containing *e*. The excess $e(\nu, S) = \sum_{j \in S} \nu_j - w(S)$ which is $< \sum_{j \in S} \nu_j + \nu_e - w(S \cup \{i\})$ which is the excess $e(\nu, S \cup \{e\})$.

・ロト ・四ト ・ヨト ・ヨト

Theorem 1. If ν is the prenucleolus for a coalition game on the group (G, *), then $\nu_i \ge 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_i < 0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S) = \sum_{j \in S} \nu_j - w(S)$ $> \sum_{j \in S} \nu_j + \nu_i - w(S \cup \{i\})$ which is the excess $e(\nu, S \cup \{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Theorem 2. If ν is the prenucleolus for a coalition game on the non-trivial group (*G*, *), then $\nu_e = 0$ for the identity element *e*.

Proof. Suppose to the contrary that $\nu_e > 0$. Consider any coalition S not containing e. The excess $e(\nu, S) = \sum_{j \in S} \nu_j - w(S)$ which is $< \sum_{j \in S} \nu_j + \nu_e - w(S \cup \{i\})$ which is the excess $e(\nu, S \cup \{e\})$. By transferring a small amount from player e to the other players, the minimum excess is strictly increased,

・ロト ・ 四ト ・ ヨト ・ ヨト …

Theorem 1. If ν is the prenucleolus for a coalition game on the group (G, *), then $\nu_i \ge 0$ for all players $i \in G$.

Proof. Suppose to the contrary that $\nu_i < 0$ for some $i \in G$. Consider any coalition S not containing i. Then the excess $e(\nu, S) = \sum_{j \in S} \nu_j - w(S)$ $> \sum_{j \in S} \nu_j + \nu_i - w(S \cup \{i\})$ which is the excess $e(\nu, S \cup \{i\})$. By giving a small amount to player i from the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Theorem 2. If ν is the prenucleolus for a coalition game on the non-trivial group (*G*, *), then $\nu_e = 0$ for the identity element *e*.

Proof. Suppose to the contrary that $\nu_e > 0$. Consider any coalition *S* not containing *e*. The excess $e(\nu, S) = \sum_{j \in S} \nu_j - w(S)$ which is $< \sum_{j \in S} \nu_j + \nu_e - w(S \cup \{i\})$ which is the excess $e(\nu, S \cup \{e\})$. By transferring a small amount from player *e* to the other players, the minimum excess is strictly increased, a contradiction to ν being the prenucleolus.

Housman & Abdelaziz (Goshen College)

э

Proof. $\nu_0 = 0$ by Theorem 2.

э

Proof. $\nu_0 = 0$ by Theorem 2. Observe that w(S) = n as long as $S \neq \{0\}$.

11/15

Proof. $\nu_0 = 0$ by Theorem 2. Observe that w(S) = n as long as $S \neq \{0\}$. Suppose $\nu_i < \nu_j$ for two players $i, j \in \mathbb{Z}_n$.

11/15

Proof. $\nu_0 = 0$ by Theorem 2. Observe that w(S) = n as long as $S \neq \{0\}$. Suppose $\nu_i < \nu_j$ for two players $i, j \in \mathbb{Z}_n$. Consider any set $S \subset \mathbb{Z}_n - \{i, j\}$.

Proof. $\nu_0 = 0$ by Theorem 2. Observe that w(S) = n as long as $S \neq \{0\}$. Suppose $\nu_i < \nu_j$ for two players $i, j \in \mathbb{Z}_n$. Consider any set $S \subset \mathbb{Z}_n - \{i, j\}$. The excess $e(\nu, S \cup \{i\})$

Proof. $\nu_0 = 0$ by Theorem 2. Observe that w(S) = n as long as $S \neq \{0\}$. Suppose $\nu_i < \nu_j$ for two players $i, j \in \mathbb{Z}_n$. Consider any set $S \subset \mathbb{Z}_n - \{i, j\}$. The excess $e(\nu, S \cup \{i\}) = \sum_{k \in S} \nu_k + \nu_i - w(S \cup \{i\})$

Proof. $\nu_0 = 0$ by Theorem 2. Observe that w(S) = n as long as $S \neq \{0\}$. Suppose $\nu_i < \nu_j$ for two players $i, j \in \mathbb{Z}_n$. Consider any set $S \subset \mathbb{Z}_n - \{i, j\}$. The excess $e(\nu, S \cup \{i\}) = \sum_{k \in S} \nu_k + \nu_i - w(S \cup \{i\})$ $= \sum_{k \in S} \nu_k + \nu_i - w(S \cup \{j\})$

Proof. $\nu_0 = 0$ by Theorem 2. Observe that w(S) = n as long as $S \neq \{0\}$. Suppose $\nu_i < \nu_j$ for two players $i, j \in \mathbb{Z}_n$. Consider any set $S \subset \mathbb{Z}_n - \{i, j\}$. The excess $e(\nu, S \cup \{i\}) = \sum_{k \in S} \nu_k + \nu_i - w(S \cup \{i\})$ $= \sum_{k \in S} \nu_k + \nu_i - w(S \cup \{j\})$ $< \sum_{k \in S} \nu_k + \nu_j - w(S \cup \{j\})$

Proof. $\nu_0 = 0$ by Theorem 2. Observe that w(S) = n as long as $S \neq \{0\}$. Suppose $\nu_i < \nu_j$ for two players $i, j \in \mathbb{Z}_n$. Consider any set $S \subset \mathbb{Z}_n - \{i, j\}$. The excess $e(\nu, S \cup \{i\}) = \sum_{k \in S} \nu_k + \nu_i - w(S \cup \{i\})$ $= \sum_{k \in S} \nu_k + \nu_j - w(S \cup \{j\})$ $< \sum_{k \in S} \nu_k + \nu_j - w(S \cup \{j\})$ $= e(\nu, S \cup \{j\})$

Proof. $\nu_0 = 0$ by Theorem 2. Observe that w(S) = n as long as $S \neq \{0\}$. Suppose $\nu_i < \nu_j$ for two players $i, j \in \mathbb{Z}_n$. Consider any set $S \subset \mathbb{Z}_n - \{i, j\}$. The excess $e(\nu, S \cup \{i\}) = \sum_{k \in S} \nu_k + \nu_i - w(S \cup \{i\})$ $= \sum_{k \in S} \nu_k + \nu_i - w(S \cup \{j\})$ $< \sum_{k \in S} \nu_k + \nu_j - w(S \cup \{j\})$ $= e(\nu, S \cup \{j\})$

By transferring a small amount from player j to player i, the minimum excess will be increased,

Proof. $\nu_0 = 0$ by Theorem 2. Observe that w(S) = n as long as $S \neq \{0\}$. Suppose $\nu_i < \nu_j$ for two players $i, j \in \mathbb{Z}_n$. Consider any set $S \subset \mathbb{Z}_n - \{i, j\}$. The excess $e(\nu, S \cup \{i\}) = \sum_{k \in S} \nu_k + \nu_i - w(S \cup \{i\})$ $= \sum_{k \in S} \nu_k + \nu_i - w(S \cup \{j\})$ $< \sum_{k \in S} \nu_k + \nu_j - w(S \cup \{j\})$ $= e(\nu, S \cup \{j\})$

By transferring a small amount from player j to player i, the minimum excess will be increased, a contradiction to ν being the prenucleolus.

くぼう くほう くほう しゅ

Proof. $\nu_0 = 0$ by Theorem 2. Observe that w(S) = n as long as $S \neq \{0\}$. Suppose $\nu_i < \nu_j$ for two players $i, j \in \mathbb{Z}_n$. Consider any set $S \subset \mathbb{Z}_n - \{i, j\}$. The excess $e(\nu, S \cup \{i\}) = \sum_{k \in S} \nu_k + \nu_i - w(S \cup \{i\})$ $= \sum_{k \in S} \nu_k + \nu_i - w(S \cup \{j\})$ $< \sum_{k \in S} \nu_k + \nu_j - w(S \cup \{j\})$ $= e(\nu, S \cup \{j\})$

By transferring a small amount from player j to player i, the minimum excess will be increased, a contradiction to ν being the prenucleolus. Thus, $\nu_i = \nu_j$ for any two players $i, j \in \mathbb{Z}_n$.

Conjecture. Suppose *n* is the product of 2 or more primes $p_1 < \cdots < p_m$. The prenucleolus ν of the coalition game on \mathbb{Z}_n satisfies

 $\nu_i = \begin{cases} p_1/(p_1 - 1) & i \notin C \\ 0 & i \in C \end{cases}$ where C is the subgroup generated by p_1 .

Conjecture. Suppose *n* is the product of 2 or more primes $p_1 < \cdots < p_m$. The prenucleolus ν of the coalition game on \mathbb{Z}_n satisfies

$$\nu_i = \begin{cases} p_1/(p_1 - 1) & i \notin C \\ 0 & i \in C \end{cases}$$
 where C is the subgroup generated by p_1 .

Proof. Let

- A be the set of generators,
- $B = \mathbb{Z}_n A C$,
- C₀ be the subset of C whose elements are coprime with p_2, \ldots, p_m , and

•
$$\lambda = p_1/(p_1 - 1)$$
.

Conjecture. Suppose *n* is the product of 2 or more primes $p_1 < \cdots < p_m$. The prenucleolus ν of the coalition game on \mathbb{Z}_n satisfies

$$\nu_i = \begin{cases} p_1/(p_1 - 1) & i \notin C \\ 0 & i \in C \end{cases}$$
 where C is the subgroup generated by p_1 .

Proof. Let

- A be the set of generators,
- $B = \mathbb{Z}_n A C$,
- C₀ be the subset of C whose elements are coprime with p_2, \ldots, p_m , and
- $\lambda = p_1/(p_1 1)$.

Observe that for ν as defined above,

•
$$\sum_{i=0}^{n-1} \nu_i = (n-|C|)\lambda = (n-n/p_1)\lambda = (n/p_1)(1-p_1)\lambda = n.$$

Conjecture. Suppose *n* is the product of 2 or more primes $p_1 < \cdots < p_m$. The prenucleolus ν of the coalition game on \mathbb{Z}_n satisfies

$$\nu_i = \begin{cases} p_1/(p_1 - 1) & i \notin C \\ 0 & i \in C \end{cases}$$
 where C is the subgroup generated by p_1 .

Proof. Let

- A be the set of generators,
- $B = \mathbb{Z}_n A C$,
- C₀ be the subset of C whose elements are coprime with p_2, \ldots, p_m , and
- $\lambda = p_1/(p_1 1)$.

Observe that for ν as defined above,

•
$$\sum_{i=0}^{n-1} \nu_i = (n-|C|)\lambda = (n-n/p_1)\lambda = (n/p_1)(1-p_1)\lambda = n.$$

• If $i \in A$, then $w(\{i\}) = n$ and $e(\nu, \{i\}) = \lambda - n$.

Conjecture. Suppose *n* is the product of 2 or more primes $p_1 < \cdots < p_m$. The prenucleolus ν of the coalition game on \mathbb{Z}_n satisfies

$$\nu_i = \begin{cases} p_1/(p_1-1) & i \notin C \\ 0 & i \in C \end{cases}$$
 where C is the subgroup generated by p_1 .

Proof. Let

- A be the set of generators,
- $B = \mathbb{Z}_n A C$,
- C_0 be the subset of C whose elements are coprime with p_2, \ldots, p_m , and
- $\lambda = p_1/(p_1 1)$.

Observe that for ν as defined above,

•
$$\sum_{i=0}^{n-1} \nu_i = (n-|C|)\lambda = (n-n/p_1)\lambda = (n/p_1)(1-p_1)\lambda = n.$$

- If $i \in A$, then $w(\{i\}) = n$ and $e(\nu, \{i\}) = \lambda n$.
- If $j \in B$ and $k \in C_0$, then $w(\{j, k\}) = n$ and $e(\nu, \{j, k\}) = \lambda n$.

Conjecture. Suppose *n* is the product of 2 or more primes $p_1 < \cdots < p_m$. The prenucleolus ν of the coalition game on \mathbb{Z}_n satisfies

$$\nu_i = \begin{cases} p_1/(p_1-1) & i \notin C \\ 0 & i \in C \end{cases}$$
 where C is the subgroup generated by p_1 .

Proof. Let

- A be the set of generators,
- $B = \mathbb{Z}_n A C$,
- C_0 be the subset of C whose elements are coprime with p_2, \ldots, p_m , and
- $\lambda = p_1/(p_1 1)$.

Observe that for ν as defined above,

•
$$\sum_{i=0}^{n-1} \nu_i = (n-|C|)\lambda = (n-n/p_1)\lambda = (n/p_1)(1-p_1)\lambda = n.$$

- If $i \in A$, then $w(\{i\}) = n$ and $e(\nu, \{i\}) = \lambda n$.
- If $j \in B$ and $k \in C_0$, then $w(\{j, k\}) = n$ and $e(\nu, \{j, k\}) = \lambda n$.
- If S is any coalition, then $w() \le n$ and $e(\nu, S) \ge \lambda n$.

Conjecture. Suppose *n* is the product of 2 or more primes $p_1 < \cdots < p_m$. The prenucleolus ν of the coalition game on \mathbb{Z}_n satisfies

$$\nu_i = \begin{cases} p_1/(p_1 - 1) & i \notin C \\ 0 & i \in C \end{cases}$$
 where C is the subgroup generated by p_1 .

Proof. Let

- A be the set of generators,
- $B = \mathbb{Z}_n A C$,
- C_0 be the subset of C whose elements are coprime with p_2, \ldots, p_m , and
- $\lambda = p_1/(p_1 1)$.

Observe that for ν as defined above,

•
$$\sum_{i=0}^{n-1} \nu_i = (n-|C|)\lambda = (n-n/p_1)\lambda = (n/p_1)(1-p_1)\lambda = n.$$

- If $i \in A$, then $w(\{i\}) = n$ and $e(\nu, \{i\}) = \lambda n$.
- If $j \in B$ and $k \in C_0$, then $w(\{j, k\}) = n$ and $e(\nu, \{j, k\}) = \lambda n$.
- If S is any coalition, then $w() \le n$ and $e(\nu, S) \ge \lambda n$.

Suppose x is an allocation that maximizes the minimum excess. $z \rightarrow z \rightarrow \infty$

Conjecture. Suppose *n* is the product of 2 or more primes $p_1 < \cdots < p_m$. The prenucleolus ν of the coalition game on \mathbb{Z}_n satisfies

$$\nu_i = \begin{cases} p_1/(p_1 - 1) & i \notin C \\ 0 & i \in C \end{cases}$$
 where C is the subgroup generated by p_1 .

Proof. By $e(x, S) \ge \lambda - n$ for all coalitions S and Theorem 1: Inequalities

$$\begin{array}{ll} x_i \geq \lambda, & i \in A \\ x_j + x_k \geq \lambda, j \in B, k \in C_0 \\ x_i \geq 0, & k \in C_0 \\ x_i \geq 0, & k \in C - C_0 \end{array}$$

Conjecture. Suppose *n* is the product of 2 or more primes $p_1 < \cdots < p_m$. The prenucleolus ν of the coalition game on \mathbb{Z}_n satisfies

 $\nu_i = \begin{cases} p_1/(p_1 - 1) & i \notin C \\ 0 & i \in C \end{cases}$ where C is the subgroup generated by p_1 .

Proof. By $e(x, S) \ge \lambda - n$ for all coalitions S and Theorem 1:

Inequalities		Α	В	C_0	$C - C_{0}$	number
$x_i \geq \lambda$,	$i \in A$	1	0	0	0	A
$x_j + x_k \ge$	$\lambda, j \in B, k \in C_0$	0	$ C_{0} $	B	0	$ B C_0 $
$x_i \geq 0,$	$k \in C_0$	0	0	1	0	$ C_0 $
$x_i \geq 0,$	$k \in C - C_0$	0	0	0	1	$ C - C_0 $

Conjecture. Suppose *n* is the product of 2 or more primes $p_1 < \cdots < p_m$. The prenucleolus ν of the coalition game on \mathbb{Z}_n satisfies

$$\nu_i = \begin{cases} p_1/(p_1 - 1) & i \notin C \\ 0 & i \in C \end{cases}$$
 where C is the subgroup generated by p_1 .

Proof. By $e(x, S) \ge \lambda - n$ for all coalitions S and Theorem 1:

Conjecture. Suppose *n* is the product of 2 or more primes $p_1 < \cdots < p_m$. The prenucleolus ν of the coalition game on \mathbb{Z}_n satisfies

$$\nu_i = \begin{cases} p_1/(p_1 - 1) & i \notin C \\ 0 & i \in C \end{cases}$$
 where C is the subgroup generated by p_1 .

Proof. By $e(x, S) \ge \lambda - n$ for all coalitions *S* and Theorem 1:

Multiplying each inequality of each type by the corresponding weight and summing, we obtain $n = \sum_{i=0}^{n} x_i \ge (|A| + |B|)\lambda = n$.

Conjecture. Suppose *n* is the product of 2 or more primes $p_1 < \cdots < p_m$. The prenucleolus ν of the coalition game on \mathbb{Z}_n satisfies

$$\nu_i = \begin{cases} p_1/(p_1 - 1) & i \notin C \\ 0 & i \in C \end{cases}$$
 where C is the subgroup generated by p_1 .

Proof. By $e(x, S) \ge \lambda - n$ for all coalitions *S* and Theorem 1:

Multiplying each inequality of each type by the corresponding weight and summing, we obtain $n = \sum_{i=0}^{n} x_i \ge (|A| + |B|)\lambda = n$. All of the inequalities must hold with equality.

Conjecture. Suppose *n* is the product of 2 or more primes $p_1 < \cdots < p_m$. The prenucleolus ν of the coalition game on \mathbb{Z}_n satisfies

$$\nu_i = \begin{cases} p_1/(p_1-1) & i \notin C \\ 0 & i \in C \end{cases}$$
 where C is the subgroup generated by p_1 .

Proof. By $e(x, S) \ge \lambda - n$ for all coalitions *S* and Theorem 1:

Multiplying each inequality of each type by the corresponding weight and summing, we obtain $n = \sum_{i=0}^{n} x_i \ge (|A| + |B|)\lambda = n$. All of the inequalities must hold with equality. Hence, $x_i = 0$ for all $i \in C$,

Conjecture. Suppose *n* is the product of 2 or more primes $p_1 < \cdots < p_m$. The prenucleolus ν of the coalition game on \mathbb{Z}_n satisfies

$$\nu_i = \begin{cases} p_1/(p_1-1) & i \notin C \\ 0 & i \in C \end{cases}$$
 where C is the subgroup generated by p_1 .

Proof. By $e(x, S) \ge \lambda - n$ for all coalitions S and Theorem 1:

Inequalities $A \ B \ C_0 \ C - C_0$ number weight

Multiplying each inequality of each type by the corresponding weight and summing, we obtain $n = \sum_{i=0}^{n} x_i \ge (|A| + |B|)\lambda = n$. All of the inequalities must hold with equality. Hence, $x_i = 0$ for all $i \in C$, and $x_i = \lambda$ for all $i \in A \cup B$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ○ ○ ○ Fall 2022

Conjecture. Suppose *n* is the product of 2 or more primes $p_1 < \cdots < p_m$. The prenucleolus ν of the coalition game on \mathbb{Z}_n satisfies

$$\nu_i = \begin{cases} p_1/(p_1-1) & i \notin C \\ 0 & i \in C \end{cases}$$
 where C is the subgroup generated by p_1 .

Proof. By $e(x, S) \ge \lambda - n$ for all coalitions S and Theorem 1:

Multiplying each inequality of each type by the corresponding weight and summing, we obtain $n = \sum_{i=0}^{n} x_i \ge (|A| + |B|)\lambda = n$. All of the inequalities must hold with equality. Hence, $x_i = 0$ for all $i \in C$, and $x_i = \lambda$ for all $i \in A \cup B$. Thus, $x = \nu$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ○ ○ ○
We Thought We Knew \mathbb{Z}_n

Conjecture. Suppose *n* is the product of 2 or more primes $p_1 < \cdots < p_m$. The prenucleolus ν of the coalition game on \mathbb{Z}_n satisfies

$$\nu_i = \begin{cases} p_1/(p_1 - 1) & i \notin C \\ 0 & i \in C \end{cases}$$
 where C is the subgroup generated by p_1 .

Proof. By $e(x, S) \ge \lambda - n$ for all coalitions S and Theorem 1:

Multiplying each inequality of each type by the corresponding weight and summing, we obtain $n = \sum_{i=0}^{n} x_i \ge (|A| + |B|)\lambda = n$. All of the inequalities must hold with equality. Hence, $x_i = 0$ for all $i \in C$, and $x_i = \lambda$ for all $i \in A \cup B$. Thus, $x = \nu$.

This works as long as $1 - |B|/|C_0| > 0$ or $|C_0| > |B|$.

For a group \mathbb{Z}_n with addition modulo n, let

- A be the set of generators,
- C be the largest proper subgroup of G generated by the smallest prime factor p_1 of |G|, and
- *B* be the set of all the elements not in *A* or *C*.

The prenucleolus ν satisfies

where λ is chosen so that ν is an allocation.

Possible Research Directions

Housman & Abdelaziz (Goshen College) Game and Group Theories Together

Image: A matrix

æ

∃ →

• Try another class of groups.

æ

- Try another class of groups.
- Consider the Shapley value instead of the prenucleolus.

- Try another class of groups.
- Consider the Shapley value instead of the prenucleolus.
- Define the coalition game differently.

15/15

- Try another class of groups.
- Consider the Shapley value instead of the prenucleolus.
- Define the coalition game differently.
- Is there some direction that will provide new insights into group theory or game theory?

15/15