LAB 5.1 Hard and Soft Springs
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In this lab, we continue our study of second-order equations by considering “nonlinear
springs.” In Sections 2.1 and 2.3, we developed the model of a spring based on Hooke’s
law. Hooke’s law asserts that the restoring force of a spring is proportional to its dis-
placement, and this assumption leads to the second-order equation
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Since the resulting differential equation is linear, we say that the spring is linear. In this
case the restoring force is —ky. In addition, we assume that the friction or damping
force is proportional to the velocity. The resulting second-order equation is
d’y , . dy
m—s +bdt +ky =0.

Hooke’s law is an idealized model that works well for small oscillations. In fact
the restoring force of a spring is roughly linear if the displacement of the spring from
its equilibrium position is small, but it is generally more accurate to model the restoring
force by a cubic of the form —ky + ay®, where a is small relative to k. If a is nega-
tive, the spring is said to be hard, and if a is positive, the spring is soft. In this lab we
consider the behavior of hard and soft springs for particular values of the parameters.
(Your instructor will tell you which parameter value(s) from Table 5.1 to use.)

In your report, you should analyze the phase planes and y(¢)- and v(t)-graphs to
describe the long-term behavior of the solutions to the equations:

1. (Hard spring with no damping) The first equation that you should study is the hard
spring with no damping; that is, b = 0 and @ = a;. Examine solutions using both
their graphs and the phase plane. Consider the periods of the periodic solutions that
have the initial condition v(0) = 0. Sketch the graph of the period as a function of
the initial condition y(0). Is there a minimum period? A maximum period? If so,
how do you interpret these extrema?

2. (Hard spring with damping) Now use the given value of b and a = aj to introduce
damping into the discussion. What happens to the long-term behavior of solutions
in this case? Determine the value of the damping parameter that separates the under-
damped case from the overdamped case.

3. (Soft spring with no damping) Consider the soft spring that corresponds to the posi-
tive value a; of a. Over what range of y-values is this model reasonable? Consider
the periods f the periodic solutions that have the initial condition v(0) = 0. Sketch
the graph of the period as a function of the initial condition y(0). Is there a minimum
period? A maximum period? Use the phase portrait to help justify your answer.

4. (Soft spring with damping) Using the given values of b and a = a3, what happens to
the long-term behavior of solutions in this case? Determine the value of the damping
parameter that separates the underdamped case from the overdamped case.
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S. From a physical point of view, what’s the difference between a hard spring and a soft
spring?

Your report: Address each of the five items in the form of a short essay. You may
illustrate your essay with phase portraits and graphs of solutions. However, your essay
should be complete and understandable without the pictures. Make sure you relate the
behavior of the solutions to the motion of the associated mass and spring systems.

Table 5.1
Choices for the parameter values. Assume the mass m = 1
unless you are told otherwise by your instructor.

S
g Choice k b aj a
1 0.1 0.15 —0.005 0.005
2 0.2 0.20 —0.008 0.008
8 0.3 0.20 —0.009 0.009
st 4 0.2 0.20 —0.005 0.005
m 5 0.1 0.10 —0.005 0.005
12 6 0.3 0.20 —0.007 0.007
- 7 037 0:15" . =0.007: * 0.007
5 8 00 015,/ ~0.004" 0,004
9 0.2 0.15 —0.005 0.005
to 10 0.3 0.20 —0.008 0.008
= LAB 5.2 Higher Order Approximations of the Pendulum
iat ;
of In previous chapters, we studied the behavior of second-order, homogeneous linear
1% equations (like the harmonic oscillator) by reducing them to first-order linear systems.
This “reduction” technique can be applied to nonlinear equations as well, and in this lab ;
ice we study the ideal pendulum and approximations to the pendulum using this technique.
ms In the text we modeled the ideal pendulum by the second-order, nonlinear equa-
er- tion H
L0 !
¥si- ' digiil , '
der where @ is the angle from the vertical, g is the gravitational constant (g = 32 ft/s?), and
tch 1 is the length of the rod of the pendulum, that is, the radius of the circle on which the {
um mass travels. In this lab we compare the results of numerical simulation of this model
F with the results obtained from two approximations to this model. The first approxima-
s tion is a linear approximation given by
in d%
8 5 +76=0
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The second approximation is a cubic approximation

e g 63
T 4=le-—]=0.
dt2+l( 6

Recall from calculus that the expression 6 — 63 /6 represents the first two terms in the
power series expansion of sin @ about § = 0. We are especially interested in how close
the solutions of the approximations of the ideal pendulum equation are to the original
ideal pendulum equation. In particular, we are interested in how closely the periods of
the periodic orbits of the approximations of the pendulum equation relate to the periods
of the periodic orbits of original equation. Your instructor will tell you what value of
the parameter / (the length of the pendulum arm) you should use. Your report should
include:

1. A phase portrait analysis for all three equations. Compare and contrast these phase
portraits from the point of view of how well the linear and cubic equations approxi-
mate the ideal pendulum.

2. In order to study how the periods of the periodic orbits are related, consider the one-
parameter family of initial conditions parameterized by 6p, where 6(0) = 6y and
6’(0) = O (no initial velocity). In other words, you should study the various so-
lutions that begin at a given angle with zero velocity. For what intervals of initial
conditions do the periods of the periodic orbits of

a0 g
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closely approximate the periods of the periodic orbits of the ideal pendulum? (The
computation of the periods in the linear approximation can be done exactly using
the techniques of Chapter 3. Analytic techniques exist for computing the periods of
the periodic orbits of the other two equations, but in this lab you should work nu-
merically.) You should plot graphs of the period as a function of 6 using a rela-
tively small table (5, 10, or 15 entries) of periods obtained using direct numerical
simulation of the model.

3. Another family of initial conditions is (0) = 0 and 6’(0) = vp. In this family, the
initial velocity is the parameter. Initially the pendulum points straight down with a
given velocity vp. What changes from your results in Part 2 above?

and

4. Suppose you are a clockmaker who makes clocks based on the motion of a pendu-
lum. For each of the three equations, what would you do to double the period of the
oscillation?

Your report: Address each of the items above in the form of a short essay. Be as
systematic as possible when collecting data, and present this data in a concise and clear
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format. You may illustrate your essay with phase portraits and graphs of solutions or of
the data that you collect. However, your essay should be complete and understandable
without the pictures.

19 LAB 5.3 A Family of Predator-Prey Equations

se
al In this laboratory exercise, you will study a one-parameter family of nonlinear, first-
gf order systems consisting of predator-prey equations. The family is
S
; d
;)g £=9x—ax2—3xy
d
2 2y 4y,
5. dt
3ﬁ_ where o > 0 is a parameter. In other words, for different values of o we have different

systems. The variable x is the population (in some scaled units) of prey, and y is the
population of predators. For a given value of o, we want to understand what happens to

e- these populations as ¢t — oo.
You should investigate the phase portraits of these equations for various values
of a in the interval 0 < a < 5. To get started, you might want to trty o = 0, 1, 2, 3,
al 4, and 5. Think about what the phase portrait means in terms of the evolution of the
x and y populations. Where are the equilibrium points? What does linearization tell
you about their types? What happens to a typical solution curve? Also, consider the
behavior of the special solutions where either x = 0 or y = 0 (solution curves lying on

the x- or y-axes).

Determine the bifurcation values of a—that is, the values of a where nearby a’s
lead to “different” behaviors in the phase portrait. For example, o = 0 is a bifurcation
value because for @ = 0, the long-term behavior of the populations is dramatically

h different than the long-term behavior of the populations if « is slightly positive. The
i; P s technique of linearization suggests bifurcation values. i
of Your report: After you have determined all of the bifurcation values for « in the inter-
u- val 0 < a < 5, study enough specific values of « to be able to discuss all of the various
a- population evolution scenarios for these systems. In your report, you should describe
ial these scenarios using the phase portraits and x(z)- and y(z)-graphs. Your report should

include: &
he 1. A brief discussion of the significance of the various terms in the system. For exam- f
(a ple, what does the 9x represent? What does the 3xy term represent?

2. A discussion of all bifurcations including the bifurcation at @ = 0. For example, a ]
u- bifurcation occurs between @ = 3 and @ = 5. What does this bifurcation mean for
he the predator population?

Address the questions above in the form of a short essay, and support your assertions
as with selected illustrations. (Please remember that although one good illustration may
ar be worth 1000 words, 1000 illustrations are usually worth nothing.)
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LAB 5.4 The Glider
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Consider a glider flying in the xy-plane (see Figure 5.66). Let s(t) be the speed of
the glider along its path at time ¢ and (¢) be the angle of the velocity vector of the
path with the x-direction at time ¢. Note that, since the body of the glider points in the
direction of motion, @ is also the angle between the glider and the x-direction.

Figure 5.66
The angle 9 for the motion of a glider.

The forces involved are gravity, lift provided by the wings (a force perpendicular
to the velocity vector), and drag (a force parallel but in the opposite direction to the
velocity vector). Using F = ma, we can obtain equations for d%x/dt? and d*y/dt?
and then derive the system

P
dae _s2—0059
dr s
ds
— — —sinf — Ds%.
27 sin 5

(The derivation involves several changes of coordinates, including a change of time
scale, and is an excellent exercise for your friends who are studying classical mechan-
ics.) Note that this model assumes that both the lift and drag are proportional to the
square of the velocity.*

The most remarkable thing about this system is that there is only one parame-
ter, D. This parameter is the drag force caused by air resistance divided by the lift, the
“drag-to-lift ratio”” The designer of a glider tries to maximize lift while minimizing
drag, so the parameter D can be viewed as a measure of the quality of the design (a
small value for D is preferred). In this lab we consider the solutions of this model and
their relationship to the flight of the glider.

Your report should address the following items:

1. Study the solutions of the system above with D = 0 (that is, for the perfect glider
with zero drag). Are there equilibrium points? What is the physical interpretation

*This model appears in the book Theory of Oscillators by A. A. Andronoy, A. A. Vitt, and S. E. Khaikin,
Dover Publishing, 1987. Other excellent sources are Nonlinear Dynamics and Chaos, by S. Strogatz, Perseus
Press, 1994, and Interactive Differential Equations Workbook by B. West, S. Strogatz, J. M. Dill, and
J. Cantwell, Addison Wesley Interactive, 1997.




(in terms of the path of the glider) of the equilibria? How do the initial conditions
relate to the launch of the glider and how does the flight path change with different
initial conditions? Show that the quantity C(0, s) = s> — 3scos6 is a conserved
quantity for this system. What does the function C tell you about the solution curves
of the system? Are there periodic solutions?

2. Repeat your analysis for values of D between 0 and 4 (that is, for increasing drag-
to-lift ratio). How do the phase portraits change as D changes? How do the possible
glider paths change as D increases?

3. Apply the theory of linearization to classify all equilibria for values of D in the in-
terval 0 < D < 4. Determine the bifurcation values of D.

4. Reconstructing the motion of the glider from the equations: Given a value of D and
an initial condition (6p, so), the motion of the glider is determined from the equa-
tions. Show how one can start with values of D and (6, so) and obtain the path of

’ the glider. Be precise. (One good way to do this part of the project is to write the
code that you would need to draw the path of the glider in some convenient program-
ming language.)

S. Why is it more natural to think of the “phase cylinder” for this system rather than
the phase plane? What changes if you analyze the system using a phase cylinder in
place of a phase plane?

6. Construct a paper glider and relate test flights to your answers in Parts 1, 2 and 3.
(Note: Gliders made from higher-quality paper demonstrate the dynamics much bet-
ter. You may wish to consult the paper airplane literature for design suggestions. For
example, J. M. Collins, The Gliding Flight, Ten Speed Press, Berkeley, 1989.)

In your report, pay particular attention to the relationship between the geometry of so-
lutions in the phase plane and the motion of the glider.
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